1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 36 trang 21 sách bài tập toán 12 - Cánh diều

Giải bài 36 trang 21 sách bài tập toán 12 - Cánh diều

Giải bài 36 trang 21 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 36 trang 21 sách bài tập Toán 12 Cánh Diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Cánh Diều, đáp ứng nhu cầu học tập của học sinh.

Nếu (intlimits_2^3 {fleft( x right)dx} = 3) và (intlimits_2^3 {gleft( x right)dx} = 1) thì (intlimits_2^3 {left[ {fleft( x right) + gleft( x right)} right]dx} ) bằng: A. 4. B. 2. C. ‒2. D. 3.

Đề bài

Nếu \(\int\limits_2^3 {f\left( x \right)dx} = 3\) và \(\int\limits_2^3 {g\left( x \right)dx} = 1\) thì \(\int\limits_2^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \) bằng:

A. 4.

B. 2.

C. ‒2.

D. 3.

Phương pháp giải - Xem chi tiếtGiải bài 36 trang 21 sách bài tập toán 12 - Cánh diều 1

Sử dụng tính chất của tích phân: \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \).

Lời giải chi tiết

\(\int\limits_2^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_2^3 {f\left( x \right)dx} + \int\limits_2^3 {g\left( x \right)dx} = 3 + 1 = 4\).

Chọn A.

Giải bài 36 trang 21 SBT Toán 12 Cánh Diều: Tổng quan

Bài 36 trang 21 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng thực tế.

Nội dung chi tiết bài 36 trang 21 SBT Toán 12 Cánh Diều

Bài 36 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vị trí tương đối giữa đường thẳng và mặt phẳng. Học sinh cần kiểm tra xem đường thẳng có nằm trong mặt phẳng, song song với mặt phẳng, hay cắt mặt phẳng.
  • Dạng 2: Tính khoảng cách từ điểm đến mặt phẳng. Sử dụng công thức tính khoảng cách từ điểm M(x0, y0, z0) đến mặt phẳng (Ax + By + Cz + D = 0) là: d(M, (P)) = |Ax0 + By0 + Cz0 + D| / √(A2 + B2 + C2).
  • Dạng 3: Tìm giao điểm của đường thẳng và mặt phẳng. Giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt phẳng.
  • Dạng 4: Bài toán ứng dụng. Các bài toán liên quan đến việc xác định vị trí của các điểm, đường thẳng, mặt phẳng trong không gian, hoặc tính các khoảng cách, góc giữa chúng.

Hướng dẫn giải bài 36 trang 21 SBT Toán 12 Cánh Diều (Ví dụ minh họa)

Ví dụ: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa đường thẳng d và mặt phẳng (P).

Giải:

  1. Tìm vectơ chỉ phương của đường thẳng d:a = (1, -1, 2)
  2. Tìm vectơ pháp tuyến của mặt phẳng (P):n = (2, -1, 1)
  3. Tính tích vô hướng a. n:a. n = 1*2 + (-1)*(-1) + 2*1 = 5
  4. Kết luận:a. n ≠ 0, nên đường thẳng d cắt mặt phẳng (P).

Lưu ý khi giải bài tập về đường thẳng và mặt phẳng

  • Nắm vững các công thức tính khoảng cách, góc giữa đường thẳng và mặt phẳng.
  • Sử dụng thành thạo các phương pháp giải hệ phương trình, tìm giao điểm.
  • Vẽ hình minh họa để dễ dàng hình dung và giải quyết bài toán.
  • Kiểm tra lại kết quả sau khi giải để đảm bảo tính chính xác.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là địa chỉ tin cậy cung cấp lời giải bài tập Toán 12 Cánh Diều đầy đủ, chi tiết và chính xác. Chúng tôi cam kết mang đến cho học sinh những tài liệu học tập chất lượng, giúp các em học tập hiệu quả và đạt kết quả cao trong kỳ thi.

Ngoài ra, Tusach.vn còn cung cấp nhiều tài liệu học tập khác như:

  • Giải bài tập các môn học khác
  • Bài giảng video
  • Đề thi thử
  • Tổng hợp kiến thức trọng tâm

Hãy truy cập Tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN