1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 24 trang 74 sách bài tập toán 12 - Cánh diều

Giải bài 24 trang 74 sách bài tập toán 12 - Cánh diều

Giải bài 24 trang 74 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 24 trang 74 sách bài tập Toán 12 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng nhất, hỗ trợ tối đa cho quá trình học tập của các bạn.

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Trong không gian với hệ toạ độ (Oxyz), cho (Aleft( {1;2; - 1} right),Bleft( {2; - 1;3} right),Cleft( { - 4;7;5} right)). a) Toạ độ của (overrightarrow {AB} = left( {1; - 3;4} right),overrightarrow {AC} = left( { - 5;5;6} right)). b) (AB = left| {overrightarrow {AB} } right| = sqrt {{1^2} + {{left( { - 3} right)}^2} + {4^2}} = sqrt {26} ,AC = left| {overrightarrow {AC} } right| = sqrt {{{left(

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Trong không gian với hệ toạ độ \(Oxyz\), cho \(A\left( {1;2; - 1} \right),B\left( {2; - 1;3} \right),C\left( { - 4;7;5} \right)\).

a) Toạ độ của \(\overrightarrow {AB} = \left( {1; - 3;4} \right),\overrightarrow {AC} = \left( { - 5;5;6} \right)\).

b) \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {{\left( { - 3} \right)}^2} + {4^2}} = \sqrt {26} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {5^2} + {6^2}} = \sqrt {86} \).

c) \(\overrightarrow {AB} .\overrightarrow {AC} = 4\).

d) \(\cos \widehat {BAC} = \frac{{11}}{{52}}\).

Phương pháp giải - Xem chi tiếtGiải bài 24 trang 74 sách bài tập toán 12 - Cánh diều 1

‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\).

‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):

\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).

‒ Sử dụng công thức tính tích vô hướng của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):

\(\overrightarrow u .\overrightarrow v = {x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}\).

‒ Sử dụng công thức tính góc của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):

\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).

Lời giải chi tiết

\(\overrightarrow {AB} = \left( {2 - 1; - 1 - 2;3 - \left( { - 1} \right)} \right) = \left( {1; - 3;4} \right),\overrightarrow {AC} = \left( { - 4 - 1;7 - 2;5 - \left( { - 1} \right)} \right) = \left( { - 5;5;6} \right)\).

Vậy a) đúng.

\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {{\left( { - 3} \right)}^2} + {4^2}} = \sqrt {26} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {5^2} + {6^2}} = \sqrt {86} \). Vậy b) đúng.

\(\overrightarrow {AB} .\overrightarrow {AC} = 1.\left( { - 5} \right) + \left( { - 3} \right).5 + 4.6 = 4\). Vậy c) đúng.

\(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{4}{{\sqrt {26} .\sqrt {86} }} = \frac{2}{{\sqrt {559} }}\). Vậy d) sai.

a) Đ

b) Đ

c) Đ

d) S

Giải bài 24 trang 74 SBT Toán 12 Cánh Diều: Tổng quan

Bài 24 trang 74 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ chỉ phương, vectơ pháp tuyến, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương quan giữa đường thẳng và mặt phẳng.

Nội dung chi tiết bài 24 trang 74 SBT Toán 12 Cánh Diều

Bài 24 thường bao gồm các dạng bài tập sau:

  • Xác định vị trí tương quan giữa đường thẳng và mặt phẳng: Bài tập yêu cầu xác định đường thẳng song song, vuông góc, cắt hoặc nằm trong mặt phẳng.
  • Tìm giao điểm của đường thẳng và mặt phẳng: Bài tập yêu cầu tìm tọa độ giao điểm của đường thẳng và mặt phẳng (nếu có).
  • Tính góc giữa đường thẳng và mặt phẳng: Bài tập yêu cầu tính góc giữa đường thẳng và mặt phẳng.
  • Tìm hình chiếu của đường thẳng lên mặt phẳng: Bài tập yêu cầu tìm phương trình đường thẳng là hình chiếu của đường thẳng đã cho lên mặt phẳng.

Phương pháp giải bài 24 trang 74 SBT Toán 12 Cánh Diều

Để giải quyết hiệu quả bài 24 trang 74 SBT Toán 12 Cánh Diều, học sinh cần nắm vững các kiến thức và kỹ năng sau:

  1. Vectơ chỉ phương và vectơ pháp tuyến: Hiểu rõ định nghĩa, tính chất và cách sử dụng vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng.
  2. Phương trình đường thẳng và phương trình mặt phẳng: Nắm vững các dạng phương trình đường thẳng và mặt phẳng, biết cách chuyển đổi giữa các dạng phương trình.
  3. Điều kiện song song, vuông góc, cắt nhau: Hiểu rõ các điều kiện để đường thẳng song song, vuông góc, cắt nhau với mặt phẳng.
  4. Sử dụng tích vô hướng và tích có hướng: Biết cách sử dụng tích vô hướng và tích có hướng để giải quyết các bài toán liên quan đến góc và vị trí tương quan.

Ví dụ minh họa giải bài 24 trang 74 SBT Toán 12 Cánh Diều

Ví dụ: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương quan giữa đường thẳng d và mặt phẳng (P).

Giải:

Vectơ chỉ phương của đường thẳng d là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1).

Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 5 ≠ 0. Do đó, đường thẳng d và mặt phẳng (P) cắt nhau.

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại các phép tính và kết quả.
  • Vẽ hình minh họa để dễ dàng hình dung bài toán.
  • Sử dụng các công thức và định lý một cách chính xác.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Tusach.vn - Hỗ trợ học tập Toán 12 hiệu quả

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 12 Cánh Diều. Chúng tôi hy vọng rằng những tài liệu này sẽ giúp các bạn học tập tốt hơn và đạt kết quả cao trong kỳ thi.

Ngoài ra, Tusach.vn còn cung cấp nhiều tài liệu học tập khác như lý thuyết, bài tập trắc nghiệm, đề thi thử,... Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác nhé!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN