Tusach.vn xin giới thiệu đáp án chi tiết bài 41 trang 22 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Cánh Diều, hỗ trợ tối đa cho quá trình học tập của bạn.
Cho (intlimits_{ - 1}^3 {fleft( x right)dx} = 2,intlimits_2^3 {fleft( x right)dx} = - 5). Tính tích phân (intlimits_{ - 1}^2 {fleft( x right)dx} ).
Đề bài
Cho \(\int\limits_{ - 1}^3 {f\left( x \right)dx} = 2,\int\limits_2^3 {f\left( x \right)dx} = - 5\). Tính tích phân \(\int\limits_{ - 1}^2 {f\left( x \right)dx} \).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của tích phân: \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) (với \(c \in \left[ {a;b} \right]\)).
Lời giải chi tiết
Ta có: \(\int\limits_{ - 1}^3 {f\left( x \right)dx} = \int\limits_{ - 1}^2 {f\left( x \right)dx} + \int\limits_2^3 {f\left( x \right)dx} \).
Do đó: \(2 = \int\limits_{ - 1}^2 {f\left( x \right)dx} + \left( { - 5} \right)\). Vậy \(\int\limits_{ - 1}^2 {f\left( x \right)dx} = 2 - \left( { - 5} \right) = 7\).
Bài 41 trang 22 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý đã học để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, góc giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng thực tế.
Để giải quyết bài 41 trang 22 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
(Lưu ý: Nội dung cụ thể của bài 41 sẽ thay đổi tùy theo đề bài. Dưới đây là ví dụ minh họa cách tiếp cận chung.)
Ví dụ: Cho đường thẳng (d) có phương trình tham số: x = 1 + t y = 2 - t z = 3 + 2t và mặt phẳng (P) có phương trình: 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa đường thẳng (d) và mặt phẳng (P).
Để giải các bài tập về đường thẳng và mặt phẳng nhanh chóng và chính xác, bạn nên:
Tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để giải bài tập Toán 12 Cánh Diều và nâng cao kết quả học tập của bạn!
| Công thức | Mô tả |
|---|---|
| Góc giữa đường thẳng và mặt phẳng | sin φ = |a.n| / (||a|| * ||n||) |
| Khoảng cách từ điểm M(x0, y0, z0) đến mặt phẳng (P): Ax + By + Cz + D = 0 | d = |Ax0 + By0 + Cz0 + D| / √(A2 + B2 + C2) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập