1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 59 trang 29 sách bài tập toán 12 - Cánh diều

Giải bài 59 trang 29 sách bài tập toán 12 - Cánh diều

Giải bài 59 trang 29 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu đáp án chi tiết bài 59 trang 29 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Cánh Diều, hỗ trợ tối đa cho quá trình học tập của bạn.

a) (int {left( {x + 1} right)left( {{x^2} - x + 1} right)dx} ); b) (int {xleft( {2 - frac{3}{{{x^3}}}} right)dx} ); c) (int {{e^{ - 3{rm{x}}}}dx} ); d) (int {left( {2 - 3{{tan }^2}x} right)dx} ); e) (int {frac{1}{{{2^{ - x + 1}}}}dx} ); g) (int {frac{{{3^{2{rm{x}} + 1}}}}{{{2^x}}}dx} ).

Đề bài

a) \(\int {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)dx} \);

b) \(\int {x\left( {2 - \frac{3}{{{x^3}}}} \right)dx} \);

c) \(\int {{e^{ - 3{\rm{x}}}}dx} \);

d) \(\int {\left( {2 - 3{{\tan }^2}x} \right)dx} \);

e) \(\int {\frac{1}{{{2^{ - x + 1}}}}dx} \);

g) \(\int {\frac{{{3^{2{\rm{x}} + 1}}}}{{{2^x}}}dx} \).

Phương pháp giải - Xem chi tiếtGiải bài 59 trang 29 sách bài tập toán 12 - Cánh diều 1

Sử dụng các công thức:

• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).

• \(\int {{e^x}dx} = {e^x} + C\).

• \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\).

• \(\int {\frac{1}{{{{\cos }^2}x}}dx} = \tan x + C\).

Lời giải chi tiết

a) \(\int {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)dx} = \int {\left( {{x^3} + 1} \right)dx} = \frac{{{x^4}}}{4} + x + C\).

b) \(\int {x\left( {2 - \frac{3}{{{x^3}}}} \right)dx} = \int {\left( {2x - 3{x^{ - 2}}} \right)dx} = {x^2} - 3.\frac{{{x^{ - 1}}}}{{ - 1}} + C = {x^2} + \frac{3}{x} + C\).

c) \(\int {{e^{ - 3{\rm{x}}}}dx} = \int {{{\left( {{e^{ - 3}}} \right)}^x}dx} = \frac{{{{\left( {{e^{ - 3}}} \right)}^x}}}{{\ln {e^{ - 3}}}} + C = - \frac{{{e^{ - 3{\rm{x}}}}}}{3} + C\).

d) \(\int {\left( {2 - 3{{\tan }^2}x} \right)dx} = \int {\left[ {2 - 3\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)} \right]dx} = \int {\left[ {5 - 3.\frac{1}{{{{\cos }^2}x}}} \right]dx} = 5{\rm{x}} - 3\tan x + C\).

e) \(\int {\frac{1}{{{2^{ - x + 1}}}}dx} = \int {\frac{1}{{{2^{ - x}}.2}}dx} = \int {\frac{1}{2}.{2^x}dx} = \frac{1}{2}.\frac{{{2^x}}}{{\ln 2}} + C = \frac{{{2^x}}}{{2\ln 2}} + C\).

g) \(\int {\frac{{{3^{2{\rm{x}} + 1}}}}{{{2^x}}}dx} = \int {\frac{{{9^{\rm{x}}}.3}}{{{2^x}}}dx} = \int {3.{{\left( {\frac{9}{2}} \right)}^{\rm{x}}}dx} = \frac{{3.{{\left( {\frac{9}{2}} \right)}^{\rm{x}}}}}{{\ln \frac{9}{2}}} + C = \frac{{{3^{2{\rm{x}} + 1}}}}{{{2^x}\left( {2\ln 3 - \ln 2} \right)}} + C\).

Giải bài 59 trang 29 SBT Toán 12 Cánh Diều: Tổng quan và Phương pháp giải

Bài 59 trang 29 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 59 trang 29 SBT Toán 12 Cánh Diều

Để giải quyết bài 59 trang 29 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần xét.
  2. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm cấp nhất của hàm số.
  3. Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.
  4. Xác định khoảng đơn điệu: Xét dấu đạo hàm trên các khoảng xác định để xác định khoảng đồng biến và nghịch biến của hàm số.
  5. Kết luận: Dựa vào kết quả trên để trả lời các câu hỏi của bài tập.

Đáp án chi tiết bài 59 trang 29 SBT Toán 12 Cánh Diều

Dưới đây là đáp án chi tiết cho bài 59 trang 29 SBT Toán 12 Cánh Diều:

(Nội dung đáp án chi tiết sẽ được trình bày tại đây, bao gồm các bước giải cụ thể, kết quả và giải thích rõ ràng. Ví dụ:)

Ví dụ:

Cho hàm số y = x3 - 3x2 + 2.

  • Đạo hàm: y' = 3x2 - 6x
  • Điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Khoảng đơn điệu:
    • x < 0: y' > 0 (hàm số đồng biến)
    • 0 < x < 2: y' < 0 (hàm số nghịch biến)
    • x > 2: y' > 0 (hàm số đồng biến)

Mẹo giải bài tập đạo hàm Toán 12

Để giải các bài tập về đạo hàm một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững các quy tắc tính đạo hàm: Điều này là nền tảng để giải quyết mọi bài tập về đạo hàm.
  • Sử dụng bảng đạo hàm: Bảng đạo hàm sẽ giúp bạn tiết kiệm thời gian và tránh sai sót.
  • Phân tích kỹ đề bài: Đọc kỹ đề bài để xác định chính xác yêu cầu và các thông tin cần thiết.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm sách giáo khoa, sách bài tập, đề thi và đáp án. Chúng tôi cam kết cung cấp cho bạn những tài liệu chất lượng, chính xác và cập nhật nhất. Hãy truy cập tusach.vn để học tốt môn Toán!

Các bài tập tương tự

Nếu bạn muốn luyện tập thêm, hãy tham khảo các bài tập tương tự sau:

  • Giải bài 60 trang 29 SBT Toán 12 Cánh Diều
  • Giải bài 61 trang 30 SBT Toán 12 Cánh Diều
  • ...

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN