Tusach.vn xin giới thiệu đáp án chi tiết bài 59 trang 29 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Cánh Diều, hỗ trợ tối đa cho quá trình học tập của bạn.
a) (int {left( {x + 1} right)left( {{x^2} - x + 1} right)dx} ); b) (int {xleft( {2 - frac{3}{{{x^3}}}} right)dx} ); c) (int {{e^{ - 3{rm{x}}}}dx} ); d) (int {left( {2 - 3{{tan }^2}x} right)dx} ); e) (int {frac{1}{{{2^{ - x + 1}}}}dx} ); g) (int {frac{{{3^{2{rm{x}} + 1}}}}{{{2^x}}}dx} ).
Đề bài
a) \(\int {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)dx} \);
b) \(\int {x\left( {2 - \frac{3}{{{x^3}}}} \right)dx} \);
c) \(\int {{e^{ - 3{\rm{x}}}}dx} \);
d) \(\int {\left( {2 - 3{{\tan }^2}x} \right)dx} \);
e) \(\int {\frac{1}{{{2^{ - x + 1}}}}dx} \);
g) \(\int {\frac{{{3^{2{\rm{x}} + 1}}}}{{{2^x}}}dx} \).
Phương pháp giải - Xem chi tiết
Sử dụng các công thức:
• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
• \(\int {{e^x}dx} = {e^x} + C\).
• \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\).
• \(\int {\frac{1}{{{{\cos }^2}x}}dx} = \tan x + C\).
Lời giải chi tiết
a) \(\int {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)dx} = \int {\left( {{x^3} + 1} \right)dx} = \frac{{{x^4}}}{4} + x + C\).
b) \(\int {x\left( {2 - \frac{3}{{{x^3}}}} \right)dx} = \int {\left( {2x - 3{x^{ - 2}}} \right)dx} = {x^2} - 3.\frac{{{x^{ - 1}}}}{{ - 1}} + C = {x^2} + \frac{3}{x} + C\).
c) \(\int {{e^{ - 3{\rm{x}}}}dx} = \int {{{\left( {{e^{ - 3}}} \right)}^x}dx} = \frac{{{{\left( {{e^{ - 3}}} \right)}^x}}}{{\ln {e^{ - 3}}}} + C = - \frac{{{e^{ - 3{\rm{x}}}}}}{3} + C\).
d) \(\int {\left( {2 - 3{{\tan }^2}x} \right)dx} = \int {\left[ {2 - 3\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)} \right]dx} = \int {\left[ {5 - 3.\frac{1}{{{{\cos }^2}x}}} \right]dx} = 5{\rm{x}} - 3\tan x + C\).
e) \(\int {\frac{1}{{{2^{ - x + 1}}}}dx} = \int {\frac{1}{{{2^{ - x}}.2}}dx} = \int {\frac{1}{2}.{2^x}dx} = \frac{1}{2}.\frac{{{2^x}}}{{\ln 2}} + C = \frac{{{2^x}}}{{2\ln 2}} + C\).
g) \(\int {\frac{{{3^{2{\rm{x}} + 1}}}}{{{2^x}}}dx} = \int {\frac{{{9^{\rm{x}}}.3}}{{{2^x}}}dx} = \int {3.{{\left( {\frac{9}{2}} \right)}^{\rm{x}}}dx} = \frac{{3.{{\left( {\frac{9}{2}} \right)}^{\rm{x}}}}}{{\ln \frac{9}{2}}} + C = \frac{{{3^{2{\rm{x}} + 1}}}}{{{2^x}\left( {2\ln 3 - \ln 2} \right)}} + C\).
Bài 59 trang 29 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Để giải quyết bài 59 trang 29 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần thực hiện các bước sau:
Dưới đây là đáp án chi tiết cho bài 59 trang 29 SBT Toán 12 Cánh Diều:
(Nội dung đáp án chi tiết sẽ được trình bày tại đây, bao gồm các bước giải cụ thể, kết quả và giải thích rõ ràng. Ví dụ:)
Ví dụ:
Cho hàm số y = x3 - 3x2 + 2.
Để giải các bài tập về đạo hàm một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm sách giáo khoa, sách bài tập, đề thi và đáp án. Chúng tôi cam kết cung cấp cho bạn những tài liệu chất lượng, chính xác và cập nhật nhất. Hãy truy cập tusach.vn để học tốt môn Toán!
Nếu bạn muốn luyện tập thêm, hãy tham khảo các bài tập tương tự sau:
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập