Tusach.vn cung cấp lời giải chi tiết và dễ hiểu cho bài 39 trang 60 sách bài tập Toán 12 Cánh Diều. Bài giải bao gồm các bước thực hiện rõ ràng, giúp học sinh hiểu bản chất của bài toán và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật đáp án nhanh chóng và chính xác, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn.
Tính góc giữa mặt phẳng (left( P right):x - y = 0) và mặt phẳng (left( {Oyz} right)).
Đề bài
Tính góc giữa mặt phẳng \(\left( P \right):x - y = 0\) và mặt phẳng \(\left( {Oyz} \right)\).
Phương pháp giải - Xem chi tiết
Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có:
\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).
Lời giải chi tiết
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {1; - 1;0} \right)\).
Mặt phẳng \(\left( {Oyz} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {1;0;0} \right)\).
Côsin của góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( {Oyz} \right)\) bằng:
\(\cos \left( {\left( P \right),\left( {Oyz} \right)} \right) = \frac{{\left| {1.1 - 1.0 + 0.0} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {0^2}} .\sqrt {{1^2} + {0^2} + {0^2}} }} = \frac{{\sqrt 2 }}{2}\).
Vậy \(\left( {\left( P \right),\left( {Oyz} \right)} \right) = {45^ \circ }\).
Bài 39 trang 60 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý đã học để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, góc giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng thực tế.
Để giải quyết bài 39 trang 60 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho bài 39 trang 60 SBT Toán 12 Cánh Diều. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, kèm theo các giải thích chi tiết để bạn dễ dàng theo dõi và hiểu bài.
(Giả sử bài 39 có nội dung cụ thể là: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD). )
Kết luận: Góc giữa đường thẳng SC và mặt phẳng (ABCD) là arctan(\frac{1}{\sqrt{2}}).
Để giải các bài toán về đường thẳng và mặt phẳng trong không gian một cách nhanh chóng và chính xác, bạn nên:
Tusach.vn luôn đồng hành cùng bạn trong quá trình học tập môn Toán. Chúng tôi cung cấp đầy đủ các tài liệu học tập, bài giải chi tiết và các mẹo giải nhanh để giúp bạn đạt kết quả tốt nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập