Tusach.vn xin giới thiệu đáp án chi tiết bài 67 trang 26 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Cánh Diều, hỗ trợ tối đa cho quá trình học tập của bạn.
Tổng chi phí để sản xuất (x) sản phẩm của một xí nghiệp được tính theo công thức (T = 20x + 100{rm{ }}000) (nghìn đồng). a) Viết công thức tính chi phí trung bình (Cleft( x right)) của 1 sản phẩm khi sản xuất được (x) sản phẩm. b) Xem (y = Cleft( x right)) là một hàm số xác định trên khoảng (left( {0; + infty } right)), hãy tìm tiệm cận ngang của đồ thị hàm số đó. c) Xét tính đơn điệu của hàm số (y = Cleft( x right)) trên khoảng (left( {0; + infty } right)).
Đề bài
Tổng chi phí để sản xuất \(x\) sản phẩm của một xí nghiệp được tính theo công thức
\(T = 20x + 100{\rm{ }}000\) (nghìn đồng).
a) Viết công thức tính chi phí trung bình \(C\left( x \right)\) của 1 sản phẩm khi sản xuất được \(x\) sản phẩm.
b) Xem \(y = C\left( x \right)\) là một hàm số xác định trên khoảng \(\left( {0; + \infty } \right)\), hãy tìm tiệm cận ngang của đồ thị hàm số đó.
c) Xét tính đơn điệu của hàm số \(y = C\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\).
d) Nêu nhận xét về chi phí để tạo ra 1 sản phẩm khi \(x\) càng lớn.
Phương pháp giải - Xem chi tiết
Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết
a) Công thức tính chi phí trung bình \(C\left( x \right)\) của 1 sản phẩm khi sản xuất được \(x\) sản phẩm là: \(C\left( x \right) = \frac{{20x + 100000}}{x}\).
b) Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{20x + 100000}}{x} = 20\)
Vậy \(y = 20\) là tiệm cận ngang của đồ thị hàm số đã cho.
c) Ta có:
\({y^\prime } = \frac{{ - 100000}}{{{x^2}}} < 0,\forall x \in \left( {0; + \infty } \right)\)
Bảng biến thiên của hàm số:

Vậy hàm số nghịch biến trên khoảng \(\left( {0; + \infty } \right)\).
d) Do đường thẳng \(y = 20\) là tiệm cận ngang của đồ thị hàm số \(y = C\left( x \right)\) nên khi \(x\) càng lớn thì chi phí để tạo ra 1 sản phẩm sẽ giảm gần đến mức 20 nghìn đồng và không thể giảm hơn 20 nghìn đồng cho dù số sản phẩm sản xuất được có thể lớn vô cùng.
Bài 67 trang 26 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Để giải quyết bài 67 trang 26 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần thực hiện các bước sau:
Đề bài: (Giả sử đề bài cụ thể ở đây, ví dụ: Một vật chuyển động với vận tốc v(t) = 3t2 - 6t + 2. Tính gia tốc của vật tại thời điểm t = 2.)
Giải:
Tusach.vn là website cung cấp đầy đủ và chính xác các tài liệu học tập Toán 12, bao gồm:
Chúng tôi cam kết mang đến cho bạn những trải nghiệm học tập tốt nhất. Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu hữu ích khác!
| Hàm số y = f(x) | Đạo hàm y' = f'(x) |
|---|---|
| C (hằng số) | 0 |
| xn | nxn-1 |
| sin x | cos x |
| cos x | -sin x |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập