1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 42 trang 19 sách bài tập toán 12 - Cánh diều

Giải bài 42 trang 19 sách bài tập toán 12 - Cánh diều

Giải bài 42 trang 19 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu đáp án chi tiết bài 42 trang 19 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Cánh Diều, hỗ trợ tối đa cho quá trình học tập của bạn.

Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = 2{x^3} + 3{{\rm{x}}^2} - 12{\rm{x}} + 1\) trên đoạn \(\left[ { - 1;5} \right]\); b) \(y = {\left( {x - \sqrt 2 } \right)^2}.{\left( {x + \sqrt 2 } \right)^2}\) trên đoạn \(\left[ { - \frac{1}{2};2} \right]\); c) \(y = {x^5} - 5{{\rm{x}}^4} + 5{{\rm{x}}^3} + 1\) trên đoạn \(\left[ { - 1;2} \right]\); d) \(y = x + \frac{4}{x}\) trên đoạn \(\left[ {3;4} \right]\); e) \(y = \sqrt {x - 1} + \sqrt {3 - x} \); g) \(y = x\sqrt

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau:

a) \(y = 2{x^3} + 3{{\rm{x}}^2} - 12{\rm{x}} + 1\) trên đoạn \(\left[ { - 1;5} \right]\);

b) \(y = {\left( {x - \sqrt 2 } \right)^2}.{\left( {x + \sqrt 2 } \right)^2}\) trên đoạn \(\left[ { - \frac{1}{2};2} \right]\);

c) \(y = {x^5} - 5{{\rm{x}}^4} + 5{{\rm{x}}^3} + 1\) trên đoạn \(\left[ { - 1;2} \right]\);

d) \(y = x + \frac{4}{x}\) trên đoạn \(\left[ {3;4} \right]\);

e) \(y = \sqrt {x - 1} + \sqrt {3 - x} \);

g) \(y = x\sqrt {16 - {x^2}} \).

Phương pháp giải - Xem chi tiếtGiải bài 42 trang 19 sách bài tập toán 12 - Cánh diều 1

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).

Bước 3. So sánh các giá trị tìm được ở Bước 2.

Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).

Lời giải chi tiết

a) Ta có: \(y' = 6{x^2} + 6{\rm{x}} - 12\)

Khi đó, trên đoạn \(\left[ { - 1;5} \right]\), \(y' = 0\) khi \(x = 1\).

\(y\left( { - 1} \right) = 14;y\left( 1 \right) = - 6;y\left( 5 \right) = 266\).

Vậy \(\mathop {\max }\limits_{\left[ { - 1;5} \right]} y = 266\) tại \(x = 5\), \(\mathop {\min }\limits_{\left[ { - 1;5} \right]} y = - 6\) tại \(x = 1\).

b) \(y = {\left( {x - \sqrt 2 } \right)^2}.{\left( {x + \sqrt 2 } \right)^2} = {\left[ {\left( {x - \sqrt 2 } \right)\left( {x + \sqrt 2 } \right)} \right]^2} = {\left( {{x^2} - 2} \right)^2} = {x^4} - 4{{\rm{x}}^2} + 4\)

Ta có: \(y' = 4{{\rm{x}}^3} - 8{\rm{x}}\)

Khi đó, trên đoạn \(\left[ { - \frac{1}{2};2} \right]\), \(y' = 0\) khi \(x = 0,x = \sqrt 2 \).

\(y\left( { - \frac{1}{2}} \right) = \frac{{49}}{{16}};y\left( 0 \right) = 4;y\left( {\sqrt 2 } \right) = 0;y\left( 2 \right) = 4\).

Vậy \(\mathop {\max }\limits_{\left[ { - \frac{1}{2};2} \right]} y = 4\) tại \(x = 0,{\rm{x}} = 4\), \(\mathop {\min }\limits_{\left[ { - \frac{1}{2};2} \right]} y = 0\) tại \(x = \sqrt 2 \).

c) Ta có: \(y' = 5{{\rm{x}}^4} - 20{{\rm{x}}^3} + 15{{\rm{x}}^2}\)

Khi đó, trên đoạn \(\left[ { - 1;2} \right]\), \(y' = 0\) khi \(x = 0,x = 1\).

\(y\left( { - 1} \right) = - 10;y\left( 0 \right) = 1;y\left( 1 \right) = 2;y\left( 2 \right) = - 7\).

Vậy \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} y = 2\) tại \(x = 1\), \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = - 10\) tại \(x = - 1\).

d) Ta có: \(y' = 1 - \frac{4}{{{x^2}}}\)

Khi đó, trên đoạn \(\left[ {3;4} \right]\), \(y' = 0\) không có nghiệm.

\(y\left( 3 \right) = \frac{{13}}{3};y\left( 4 \right) = 5\).

Vậy \(\mathop {\max }\limits_{\left[ {3;4} \right]} y = 5\) tại \(x = 4\), \(\mathop {\min }\limits_{\left[ {3;4} \right]} y = \frac{{13}}{3}\) tại \(x = 3\).

e) Hàm số có tập xác định là \(\left[ {1;3} \right]\).

Ta có: \(y' = \frac{1}{{\sqrt {x - 1} }} - \frac{1}{{\sqrt {3 - x} }}\)

Khi đó, trên đoạn \(\left[ {1;3} \right]\), \(y' = 0\) khi \(x = 2\).

\(y\left( 1 \right) = \sqrt 2 ;y\left( 2 \right) = 2;y\left( 3 \right) = \sqrt 2 \).

Vậy \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = 2\) tại \(x = 2\), \(\mathop {\min }\limits_{\left[ {1;3} \right]} y = \sqrt 2 \) tại \(x = 1,x = 3\).

g) Hàm số có tập xác định là \(\left[ { - 4;4} \right]\).

Ta có: \(y' = {\left( x \right)^\prime }\sqrt {16 - {x^2}} + x.{\left( {\sqrt {16 - {x^2}} } \right)^\prime } = \sqrt {16 - {x^2}} + x.\frac{{ - x}}{{\sqrt {16 - {x^2}} }} = \frac{{16 - 2{x^2}}}{{\sqrt {16 - {x^2}} }}\)

Khi đó, trên đoạn \(\left[ { - 4;4} \right]\), \(y' = 0\) khi \(x = - 2\sqrt 2 ,x = 2\sqrt 2 \).

\(y\left( { - 4} \right) = 0;y\left( { - 2\sqrt 2 } \right) = - 8;y\left( {2\sqrt 2 } \right) = 8;y\left( 4 \right) = 0\).

Vậy \(\mathop {\max }\limits_{\left[ { - 4;4} \right]} y = 8\) tại \(x = 2\sqrt 2 \), \(\mathop {\min }\limits_{\left[ { - 4;4} \right]} y = - 8\) tại \(x = - 2\sqrt 2 \).

Giải bài 42 trang 19 SBT Toán 12 Cánh Diều: Tổng quan và Phương pháp giải

Bài 42 trang 19 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý đã học để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, góc giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng thực tế.

Nội dung chi tiết bài 42 trang 19 SBT Toán 12 Cánh Diều

Để giải quyết bài 42 trang 19 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  • Vị trí tương đối giữa đường thẳng và mặt phẳng: Đường thẳng song song với mặt phẳng, đường thẳng nằm trong mặt phẳng, đường thẳng cắt mặt phẳng.
  • Góc giữa đường thẳng và mặt phẳng: Cách tính góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.
  • Khoảng cách từ điểm đến mặt phẳng: Công thức tính khoảng cách từ một điểm đến một mặt phẳng.
  • Ứng dụng: Giải các bài toán thực tế liên quan đến đường thẳng và mặt phẳng.

Hướng dẫn giải bài 42 trang 19 SBT Toán 12 Cánh Diều (Ví dụ minh họa)

Bài 42: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).

Giải:

  1. Xác định góc cần tính: Góc giữa đường thẳng SC và mặt phẳng (ABCD) chính là góc giữa đường thẳng SC và hình chiếu của nó trên mặt phẳng (ABCD), tức là góc SCA.
  2. Tính độ dài AC: Vì ABCD là hình vuông cạnh a, nên AC = a√2.
  3. Tính tan góc SCA: Trong tam giác vuông SAC, ta có tan SCA = SA/AC = a/(a√2) = 1/√2.
  4. Tính góc SCA: Suy ra góc SCA = arctan(1/√2) ≈ 35.26°.

Lưu ý khi giải bài tập về đường thẳng và mặt phẳng

  • Vẽ hình: Vẽ hình chính xác và đầy đủ là bước quan trọng để hiểu rõ bài toán và tìm ra hướng giải.
  • Nắm vững định nghĩa và tính chất: Hiểu rõ các định nghĩa, tính chất liên quan đến đường thẳng và mặt phẳng.
  • Sử dụng công thức: Áp dụng đúng các công thức tính góc, khoảng cách.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là địa chỉ tin cậy cung cấp đáp án và lời giải chi tiết các bài tập trong sách bài tập Toán 12 Cánh Diều và các bộ sách giáo khoa khác. Chúng tôi cam kết mang đến cho bạn những tài liệu học tập chất lượng, giúp bạn học tập hiệu quả và đạt kết quả cao trong các kỳ thi.

Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN