1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 30 trang 76 sách bài tập toán 12 - Cánh diều

Giải bài 30 trang 76 sách bài tập toán 12 - Cánh diều

Giải bài 30 trang 76 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 30 trang 76 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác đáp án các bài tập trong sách bài tập Toán 12 Cánh Diều.

Cho hai vectơ (overrightarrow u = left( {3;4; - 5} right),overrightarrow v = left( {5; - 7;1} right)). Toạ độ của vectơ (overrightarrow u + overrightarrow v ) là: A. (left( {8;11; - 4} right)). B. (left( { - 2;11; - 6} right)). C. (left( {8; - 3; - 4} right)). D. (left( { - 8;3;4} right)).

Đề bài

Cho hai vectơ \(\overrightarrow u = \left( {3;4; - 5} \right),\overrightarrow v = \left( {5; - 7;1} \right)\). Toạ độ của vectơ \(\overrightarrow u + \overrightarrow v \) là:

A. \(\left( {8;11; - 4} \right)\)

B. \(\left( { - 2;11; - 6} \right)\)

C. \(\left( {8; - 3; - 4} \right)\)

D. \(\left( { - 8;3;4} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 30 trang 76 sách bài tập toán 12 - Cánh diều 1

Sử dụng biểu thức toạ độ của phép cộng vectơ:

Nếu \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\) thì \(\overrightarrow u + \overrightarrow v = \left( {{x_1} + {x_2};{y_1} + {y_2};{z_1} + {z_2}} \right)\).

Lời giải chi tiết

\(\overrightarrow u + \overrightarrow v = \left( {3 + 5;4 + \left( { - 7} \right);\left( { - 5} \right) + 1} \right) = \left( {8; - 3; - 4} \right)\).

Chọn C.

Giải bài 30 trang 76 SBT Toán 12 Cánh Diều: Tổng quan và Phương pháp giải

Bài 30 trang 76 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và Mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng thực tế.

Nội dung chi tiết bài 30 trang 76 SBT Toán 12 Cánh Diều

Bài 30 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vị trí tương đối giữa đường thẳng và mặt phẳng (song song, cắt, nằm trong).
  • Dạng 2: Tính khoảng cách từ điểm đến mặt phẳng.
  • Dạng 3: Tìm giao điểm của đường thẳng và mặt phẳng.
  • Dạng 4: Lập phương trình đường thẳng, mặt phẳng thỏa mãn các điều kiện cho trước.

Hướng dẫn giải chi tiết từng bài tập

Để giải quyết các bài tập trong bài 30 trang 76 SBT Toán 12 Cánh Diều, học sinh cần nắm vững các kiến thức sau:

  1. Vectơ chỉ phương của đường thẳng:a = (ax, ay, az)
  2. Vectơ pháp tuyến của mặt phẳng:n = (A, B, C)
  3. Phương trình đường thẳng:d: x = x0 + at, y = y0 + bt, z = z0 + ct
  4. Phương trình mặt phẳng: A(x - x0) + B(y - y0) + C(z - z0) = 0

Ví dụ minh họa

Bài tập: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa d và (P).

Giải: Vectơ chỉ phương của da = (1, -1, 2). Vectơ pháp tuyến của (P) là n = (2, -1, 1). Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 5 ≠ 0. Vậy đường thẳng d và mặt phẳng (P) cắt nhau.

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại các phép tính vectơ.
  • Sử dụng các công thức một cách chính xác.
  • Vẽ hình minh họa để dễ dàng hình dung bài toán.

Tusach.vn – Đồng hành cùng bạn học Toán 12

Tusach.vn cung cấp lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 12 Cánh Diều. Hãy truy cập Tusach.vn để học tập hiệu quả và đạt kết quả cao trong môn Toán!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN