Tusach.vn xin giới thiệu lời giải chi tiết bài 27 trang 57 sách bài tập Toán 12 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng nhất, hỗ trợ tối đa cho quá trình học tập của các bạn.
Đường thẳng đi qua điểm (Mleft( {{x_0};{y_0};{z_0}} right)) và vuông góc với mặt phẳng (left( {Oxy} right)) có phương trình tham số là: A. (left{ begin{array}{l}x = {x_0}y = {y_0}z = tend{array} right.). B. (left{ begin{array}{l}x = ty = {y_0}z = {z_0}end{array} right.). C. (left{ begin{array}{l}x = {x_0}y = tz = {z_0}end{array} right.). D. (left{ begin{array}{l}x = {x_0} + ty = {y_0} + tz = {z_0} + tend{array} right.).
Đề bài
Đường thẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và vuông góc với mặt phẳng \(\left( {Oxy} \right)\) có phương trình tham số là:
A. \(\left\{ \begin{array}{l}x = {x_0}\\y = {y_0}\\z = t\end{array} \right.\).
B. \(\left\{ \begin{array}{l}x = t\\y = {y_0}\\z = {z_0}\end{array} \right.\).
C. \(\left\{ \begin{array}{l}x = {x_0}\\y = t\\z = {z_0}\end{array} \right.\).
D. \(\left\{ \begin{array}{l}x = {x_0} + t\\y = {y_0} + t\\z = {z_0} + t\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).
Lời giải chi tiết
Mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {0;0;1} \right)\).
Vậy đường thẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và vuông góc với mặt phẳng \(\left( {Oxy} \right)\) có vectơ chỉ phương \(\overrightarrow n = \left( {0;0;1} \right)\).
Đường thẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và vuông góc với mặt phẳng \(\left( {Oxy} \right)\) có phương trình tham số là: \(\left\{ \begin{array}{l}x = {x_0}\\y = {y_0}\\z = {z_0} + t\end{array} \right.\).
Bài 27 trang 57 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề như đường thẳng và mặt phẳng trong không gian, quan hệ song song, quan hệ vuông góc, và các ứng dụng của chúng. Bài tập này thường yêu cầu học sinh vận dụng các định lý, tính chất đã học để giải quyết các bài toán thực tế.
Bài 27 thường bao gồm các dạng bài tập sau:
Để giải bài 27 trang 57 SBT Toán 12 Cánh Diều một cách hiệu quả, học sinh cần:
Bài toán: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính khoảng cách từ điểm A đến mặt phẳng (SBC).
Giải:
Gọi H là trung điểm của BC. Vì ABCD là hình vuông nên AH vuông góc với BC. Do SA vuông góc với mặt phẳng (ABCD) nên SA vuông góc với BC. Suy ra BC vuông góc với mặt phẳng (SAH). Do đó, BC vuông góc với SH.
Xét tam giác SHC vuông tại H, ta có: SH = √(SC2 - HC2) = √(a2 + (a/2)2) = (a√5)/2.
Kẻ AK vuông góc với SH tại K. Khi đó, AK là khoảng cách từ A đến mặt phẳng (SBC).
Ta có: 1/AK2 = 1/SA2 + 1/AH2 = 1/a2 + 1/(a2/4) = 5/a2. Suy ra AK = a/√5 = (a√5)/5.
Vậy, khoảng cách từ điểm A đến mặt phẳng (SBC) là (a√5)/5.
Tusach.vn là website chuyên cung cấp lời giải bài tập Toán 12, đáp án sách bài tập, và các tài liệu học tập hữu ích khác. Chúng tôi luôn cập nhật những nội dung mới nhất, giúp bạn học Toán 12 một cách hiệu quả và dễ dàng. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập