Tusach.vn xin giới thiệu lời giải chi tiết bài 51 trang 66 sách bài tập Toán 12 Cánh Diều. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc rèn luyện kỹ năng giải các bài toán về đạo hàm và ứng dụng của đạo hàm.
Chúng tôi cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Cho mặt cầu \(\left( S \right)\) có phương trình: \({x^2} + {\left( {y + 4} \right)^2} + {\left( {z + 5} \right)^2} = 49\). a) Xác định toạ độ tâm \({\rm{I}}\) và tính bán kính \({\rm{R}}\) của mặt cầu \(\left( S \right)\). b) Điểm \(A\left( {0;3; - 5} \right)\) có thuộc mặt cầu \(\left( S \right)\) hay không? c) Điểm \(B\left( {1; - 4; - 1} \right)\) nằm trong hay nằm ngoài mặt cầu \(\left( S \right)\)? d) Điểm \(C\left( {7;3; - 5} \right)\) nằm trong hay nằm ngoài mặt cầu \(\left( S \rig
Đề bài
Cho mặt cầu \(\left( S \right)\) có phương trình: \({x^2} + {\left( {y + 4} \right)^2} + {\left( {z + 5} \right)^2} = 49\).
a) Xác định toạ độ tâm \({\rm{I}}\) và tính bán kính \({\rm{R}}\) của mặt cầu \(\left( S \right)\).
b) Điểm \(A\left( {0;3; - 5} \right)\) có thuộc mặt cầu \(\left( S \right)\) hay không?
c) Điểm \(B\left( {1; - 4; - 1} \right)\) nằm trong hay nằm ngoài mặt cầu \(\left( S \right)\)?
d) Điểm \(C\left( {7;3; - 5} \right)\) nằm trong hay nằm ngoài mặt cầu \(\left( S \right)\)?
e) Lập phương trình tham số của đường thẳng \(IC\).
g) Xác định toạ độ các giao điểm \(M,N\) của đường thẳng \(IC\) và mặt cầu.
Phương pháp giải - Xem chi tiết
‒ Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\).
‒ Cho mặt cầu \(\left( S \right)\) có tâm \({\rm{I}}\), bán kính \({\rm{R}}\) và một điểm \(A\).
+ Nếu \(IA < R\): \(A\) nằm trong mặt cầu.
+ Nếu \(IA = R\): \(A\) nằm trên mặt cầu.
+ Nếu \(IA > R\): \(A\) nằm ngoài mặt cầu.
‒ Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).
Lời giải chi tiết
a) Mặt cầu \({x^2} + {\left( {y + 4} \right)^2} + {\left( {z + 5} \right)^2} = 49\) có tâm \(I\left( {0; - 4; - 5} \right)\) và bán kính \(R = \sqrt {49} = 7\).
b) Ta có: \(IA = \sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( {3 - \left( { - 4} \right)} \right)}^2} + {{\left( { - 5 - \left( { - 5} \right)} \right)}^2}} = 7 = R\).
Vậy \(A\) thuộc mặt cầu \(\left( S \right)\).
c) Ta có: \(IB = \sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( { - 4 - \left( { - 4} \right)} \right)}^2} + {{\left( { - 1 - \left( { - 5} \right)} \right)}^2}} = \sqrt {17} < R\).
Vậy \(B\) nằm trong mặt cầu \(\left( S \right)\).
d) Ta có: \(IC = \sqrt {{{\left( {7 - 0} \right)}^2} + {{\left( {3 - \left( { - 4} \right)} \right)}^2} + {{\left( { - 5 - \left( { - 5} \right)} \right)}^2}} = \sqrt {65} > R\).
Vậy \(C\) nằm ngoài mặt cầu \(\left( S \right)\).
e) Ta có \(\overrightarrow {IC} = \left( {7;7;0} \right) = 7\left( {1;1;0} \right)\). Do đó \(\overrightarrow u = \left( {1;1;0} \right)\) là một vectơ chỉ phương của đường thẳng \(IC\).
Đường thẳng đi qua điểm \(I\left( {0; - 4; - 5} \right)\) và nhận \(\overrightarrow u = \left( {1;1;0} \right)\) làm vectơ chỉ phương có phương trình tham số là: \(\left\{ \begin{array}{l}x = t\\y = - 4 + t\\z = - 5\end{array} \right.\).
g) Điểm \(M\) là giao điểm của đường thẳng \(IC\) và mặt cầu nên điểm \(M\) nằm trên đường thẳng \(IC\). Vậy điểm \(M\) có toạ độ là: \(M\left( {t; - 4 + t; - 5} \right)\)
Điểm \(M\) nằm trên mặt cầu nên ta có: \({t^2} + {\left( { - 4 + t + 4} \right)^2} + {\left( { - 5 + 5} \right)^2} = 49\) hay \({t^2} = \frac{{49}}{2}\).
Suy ra \(t = \frac{{7\sqrt 2 }}{2}\) hoặc \(t = - \frac{{7\sqrt 2 }}{2}\).
Vậy toạ độ giao điểm của đường thẳng \(IC\) và mặt cầu là: \(M\left( {\frac{{7\sqrt 2 }}{2}; - 4 + \frac{{7\sqrt 2 }}{2}; - 5} \right)\) và \(N\left( { - \frac{{7\sqrt 2 }}{2}; - 4 - \frac{{7\sqrt 2 }}{2}; - 5} \right)\).
Bài 51 trang 66 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng trong chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số, các quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán thực tế.
Thông thường, bài 51 sẽ xoay quanh các dạng bài sau:
Để giải bài 51 trang 66 SBT Toán 12 Cánh Diều một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 51 (ví dụ, giả sử bài 51 có 3 câu a, b, c):
Đề bài: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = 3x2 + 4x - 5
Đề bài: Tìm khoảng đồng biến của hàm số g(x) = x2 - 4x + 3.
Lời giải:
g'(x) = 2x - 4
g'(x) > 0 khi 2x - 4 > 0 => x > 2
Vậy hàm số g(x) đồng biến trên khoảng (2, +∞).
Đề bài: Giải phương trình 2x3 - 6x2 + 2 = 0.
Lời giải:
(Giải phương trình bằng cách sử dụng đạo hàm để tìm nghiệm hoặc phân tích đa thức)
Để giải các bài tập về đạo hàm một cách nhanh chóng và chính xác, các em có thể tham khảo một số mẹo sau:
Tusach.vn luôn đồng hành cùng các em học sinh trong quá trình học tập. Chúng tôi cung cấp lời giải chi tiết, chính xác, dễ hiểu cho tất cả các bài tập trong sách giáo khoa và sách bài tập Toán 12 Cánh Diều. Hãy truy cập tusach.vn để học Toán 12 hiệu quả hơn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập