1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 63 trang 30 sách bài tập toán 12 - Cánh diều

Giải bài 63 trang 30 sách bài tập toán 12 - Cánh diều

Giải bài 63 trang 30 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 63 trang 30 sách bài tập Toán 12 Cánh Diều. Bài giải này được các thầy cô giáo có kinh nghiệm biên soạn, đảm bảo tính chính xác và dễ hiểu.

Chúng tôi luôn cố gắng cung cấp những tài liệu học tập tốt nhất cho học sinh, giúp các em học tập hiệu quả và đạt kết quả cao.

Tính: a) (intlimits_0^1 { - 2dx} ); b) (intlimits_0^1 {frac{{2x}}{3}dx} ); c) (intlimits_0^1 {{x^4}dx} ); d) (intlimits_1^3 {2sqrt[3]{x}dx} ); e) (intlimits_1^2 {frac{2}{{3x}}dx} ); g) (intlimits_1^9 {left( {xsqrt x - 2} right)dx} ).

Đề bài

Tính:

a) \(\int\limits_0^1 { - 2dx} \);

b) \(\int\limits_0^1 {\frac{{2x}}{3}dx} \);

c) \(\int\limits_0^1 {{x^4}dx} \);

d) \(\int\limits_1^3 {2\sqrt[3]{x}dx} \);

e) \(\int\limits_1^2 {\frac{2}{{3x}}dx} \);

g) \(\int\limits_1^9 {\left( {x\sqrt x - 2} \right)dx} \).

Phương pháp giải - Xem chi tiếtGiải bài 63 trang 30 sách bài tập toán 12 - Cánh diều 1

Sử dụng các công thức:

• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).

• \(\int {\frac{1}{x}dx} = \ln \left| x \right| + C\).

Lời giải chi tiết

a) \(\int\limits_0^1 { - 2dx} = \left. { - 2{\rm{x}}} \right|_0^1 = - 2\).

b) \(\int\limits_0^1 {\frac{{2x}}{3}dx} = \left. {\frac{2}{3}{\rm{.}}\frac{{{{\rm{x}}^2}}}{2}} \right|_0^1 = \left. {\frac{{{{\rm{x}}^2}}}{3}} \right|_0^1 = \frac{1}{3}\).

c) \(\int\limits_0^1 {{x^4}dx} = \left. {\frac{{{x^5}}}{5}} \right|_0^1 = \frac{1}{5}\).

d) \(\int\limits_1^3 {2\sqrt[3]{x}dx} = \int\limits_1^3 {2{x^{\frac{1}{3}}}dx} = \left. {\frac{{2{{\rm{x}}^{\frac{4}{3}}}}}{{\frac{4}{3}}}} \right|_1^3 = \left. {\frac{{3x\sqrt[3]{x}}}{2}} \right|_1^3 = \frac{{9\sqrt[3]{3} - 3}}{2}\).

e) \(\int\limits_1^2 {\frac{2}{{3x}}dx} = \left. {\frac{2}{3}\ln \left| x \right|} \right|_1^2 = \frac{2}{3}\ln 2\).

g) \(\int\limits_1^9 {\left( {x\sqrt x - 2} \right)dx} = \int\limits_1^9 {\left( {{x^{\frac{3}{2}}} - 2} \right)dx} = \left. {\left( {\frac{{{{\rm{x}}^{\frac{5}{2}}}}}{{\frac{5}{2}}} - 2{\rm{x}}} \right)} \right|_1^9 = \left. {\left( {\frac{{2{{\rm{x}}^2}\sqrt x }}{5} - 2{\rm{x}}} \right)} \right|_1^9 = \frac{{396}}{5} - \left( { - \frac{8}{5}} \right) = \frac{{404}}{5}\).

Giải bài 63 trang 30 SBT Toán 12 Cánh Diều: Tổng quan

Bài 63 trang 30 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.

Nội dung chi tiết bài 63 trang 30 SBT Toán 12 Cánh Diều

Để giúp các em học sinh hiểu rõ hơn về nội dung bài tập, Tusach.vn xin trình bày chi tiết lời giải của từng câu hỏi trong bài 63:

Câu 1: (Ví dụ minh họa - nội dung cụ thể của câu 1 sẽ được thay thế bằng nội dung thật của bài tập)

Đề bài: (Nội dung đề bài câu 1)

Lời giải: (Lời giải chi tiết câu 1, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng)

Câu 2: (Ví dụ minh họa - nội dung cụ thể của câu 2 sẽ được thay thế bằng nội dung thật của bài tập)

Đề bài: (Nội dung đề bài câu 2)

Lời giải: (Lời giải chi tiết câu 2, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng)

Các dạng bài tập thường gặp trong bài 63

  • Dạng 1: Bài tập về ứng dụng của đạo hàm để khảo sát hàm số.
  • Dạng 2: Bài tập về tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  • Dạng 3: Bài tập về giải phương trình, bất phương trình.
  • Dạng 4: Bài tập về hình học giải tích.

Mẹo giải bài tập Toán 12 Cánh Diều hiệu quả

  1. Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, định lý, công thức và kỹ năng giải toán đã học.
  2. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và các điều kiện ràng buộc.
  3. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải bài toán, lựa chọn phương pháp giải phù hợp.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả giải bài toán là chính xác và hợp lý.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, các em có thể tham khảo thêm các tài liệu sau để học tập hiệu quả:

  • Sách giáo khoa Toán 12 Cánh Diều
  • Các đề thi thử Toán 12
  • Các trang web học Toán trực tuyến uy tín

Kết luận

Hy vọng với lời giải chi tiết và những chia sẻ trên, các em học sinh sẽ tự tin hơn khi giải bài 63 trang 30 SBT Toán 12 Cánh Diều. Chúc các em học tập tốt và đạt kết quả cao!

Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với Tusach.vn để được hỗ trợ nhé!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN