Tusach.vn xin giới thiệu lời giải chi tiết bài 8 trang 47 sách bài tập Toán 12 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những tài liệu học tập chất lượng nhất, hỗ trợ học sinh học tập hiệu quả.
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho mặt phẳng (left( P right): - 3x + y - 2z + 5 = 0). a) Nếu (overrightarrow n ) là một vectơ pháp tuyến của (left( P right)) thì (koverrightarrow n ) là một vectơ pháp tuyến của (left( P right)) với (k ne 0). b) Nếu (overrightarrow n ) và (overrightarrow {n'} ) đều là vectơ pháp tuyến của (left( P right)) thì (overrightarrow n ) và (overrightarrow {n'} ) không cùng phương. c) Vectơ (
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho mặt phẳng \(\left( P \right): - 3x + y - 2z + 5 = 0\).
a) Nếu \(\overrightarrow n \) là một vectơ pháp tuyến của \(\left( P \right)\) thì \(k\overrightarrow n \) là một vectơ pháp tuyến của \(\left( P \right)\) với \(k \ne 0\).
b) Nếu \(\overrightarrow n \) và \(\overrightarrow {n'} \) đều là vectơ pháp tuyến của \(\left( P \right)\) thì \(\overrightarrow n \) và \(\overrightarrow {n'} \) không cùng phương.
c) Vectơ \(\overrightarrow n = \left( { - 3;1; - 2} \right)\) không là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).
d) Mọi vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) có toạ độ \(\left( { - 3k;k; - 2k} \right)\) với \(k \ne 0\).
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất: Nếu \(\overrightarrow n \) là vectơ pháp tuyến của một mặt phẳng thì \(k\overrightarrow n \left( {k \ne 0} \right)\) cũng là vectơ pháp tuyến của mặt phẳng đó.
Lời giải chi tiết
Theo tính chất: “Nếu \(\overrightarrow n \) là vectơ pháp tuyến của một mặt phẳng thì \(k\overrightarrow n \left( {k \ne 0} \right)\) cũng là vectơ pháp tuyến của mặt phẳng đó”. Vậy a) đúng.
Nếu \(\overrightarrow n \) và \(\overrightarrow {n'} \) đều là vectơ pháp tuyến của \(\left( P \right)\) thì \(\overrightarrow {n'} = k\overrightarrow n \left( {k \ne 0} \right)\). Do đó \(\overrightarrow n \) và \(\overrightarrow {n'} \) cùng phương. Vậy b) sai.
Mặt phẳng \(\left( P \right): - 3x + y - 2z + 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( { - 3;1; - 2} \right)\). Vậy c) sai.
\(\overrightarrow n = \left( { - 3;1; - 2} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\) thì \(k\overrightarrow n = \left( { - 3k;k; - 2k} \right)\) cũng là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\). Vậy d) đúng.
a) Đ.
b) S.
c) S.
d) Đ.
Bài 8 trang 47 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề như đường thẳng và mặt phẳng trong không gian, quan hệ song song, quan hệ vuông góc, và các bài toán liên quan đến khoảng cách. Việc nắm vững kiến thức nền tảng là yếu tố then chốt để giải quyết thành công bài tập này.
Bài 8 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 8 trang 47 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần:
Bài tập: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính khoảng cách từ điểm A đến mặt phẳng (SBC).
Giải:
Gọi H là trung điểm của BC. Vì ABCD là hình vuông nên AH vuông góc với BC. Do SA vuông góc với mặt phẳng (ABCD) nên SA vuông góc với BC. Suy ra BC vuông góc với (SAH). Do đó, khoảng cách từ A đến mặt phẳng (SBC) bằng AH.
Ta có AH = a/2. Vậy khoảng cách từ A đến mặt phẳng (SBC) là a/2.
Khi giải bài tập về đường thẳng và mặt phẳng trong không gian, bạn cần chú ý:
Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập Toán 12, bao gồm cả bài 8 trang 47 SBT Toán 12 Cánh Diều. Chúng tôi cam kết mang đến cho bạn những tài liệu học tập chất lượng nhất, giúp bạn học tập hiệu quả và đạt kết quả cao trong kỳ thi.
| Dạng bài tập | Phương pháp giải |
|---|---|
| Xác định vị trí tương đối | Sử dụng định lý về đường thẳng song song, vuông góc với mặt phẳng. |
| Tính khoảng cách | Sử dụng công thức tính khoảng cách từ điểm đến mặt phẳng. |
| Tìm giao điểm | Giải hệ phương trình đường thẳng và mặt phẳng. |
Hy vọng với những hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết bài 8 trang 47 SBT Toán 12 Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập