1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 11 trang 96 sách bài tập toán 12 - Cánh diều

Giải bài 11 trang 96 sách bài tập toán 12 - Cánh diều

Giải bài 11 trang 96 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 11 trang 96 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác đáp án các bài tập trong sách bài tập Toán 12 Cánh Diều.

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Một trung tâm ngoại ngữ thực hiện kiểm tra đầu vào của 80 học sinh đăng kí học, kết quả kiểm tra được cho bởi bảng tần số ghép nhóm như Bảng 17. a) Tổng số học sinh là 800. b) Số trung bình cộng của mẫu số liệu ghép nhóm đó là: 5,7875. c) Phương sai của mẫu số liệu ghép nhóm đó là: ({s^2} approx 3,85). d) Độ lệch chuẩn của mẫu số liệu ghép nhóm đó là: (s = sqrt {3,85} approx 1,962).

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Một trung tâm ngoại ngữ thực hiện kiểm tra đầu vào của 80 học sinh đăng kí học, kết quả kiểm tra được cho bởi bảng tần số ghép nhóm như Bảng 17.

Giải bài 11 trang 96 sách bài tập toán 12 - Cánh diều 1

a) Tổng số học sinh là 800.

b) Số trung bình cộng của mẫu số liệu ghép nhóm đó là: 5,7875.

c) Phương sai của mẫu số liệu ghép nhóm đó là: \({s^2} \approx 3,85\).

d) Độ lệch chuẩn của mẫu số liệu ghép nhóm đó là: \(s = \sqrt {3,85} \approx 1,962\).

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 96 sách bài tập toán 12 - Cánh diều 2

‒ Sử dụng công thức tính số trung bình cộng của mẫu số liệu ghép nhóm: \(\overline x = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\)trong đó \(n = {m_1} + ... + {m_k}\) là cỡ mẫu và \({x_i} = \frac{{{a_i} + {a_{i + 1}}}}{2}\) (với \(i = 1,...,k\)) là giá trị đại diện của nhóm \(\left[ {{a_i};{a_{i + 1}}} \right)\).

‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:

\({s^2} = \frac{{{n_1}{{\left( {{x_1} - \overline x } \right)}^2} + {n_2}{{\left( {{x_2} - \overline x } \right)}^2} + ... + {n_m}{{\left( {{x_m} - \overline x } \right)}^2}}}{n}\)

‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(s = \sqrt {{s^2}} \).

Lời giải chi tiết

Tổng số học sinh là: \(n = 80\). Vậy a) sai.

Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 17 là:

\(\overline x = \frac{{2.0,5 + 3.1,5 + 3.2,5 + 5.3,5 + 8.4,5 + 20.5,5 + 16.6,5 + 15.7,5 + 6.8,5 + 2.9,5}}{{80}} = \frac{{463}}{{80}} = 5,7875\)

Vậy b) đúng.

Phương sai của mẫu số liệu ghép nhóm đó là:

\(\begin{array}{l}{s^2} = \frac{1}{{80}}\left[ {2.{{\left( {0,5 - 5,7875} \right)}^2} + 3.{{\left( {1,5 - 5,7875} \right)}^2} + 3.{{\left( {2,5 - 5,7875} \right)}^2} + 5.{{\left( {3,5 - 5,7875} \right)}^2} + } \right.\\ + 8.{\left( {4,5 - 5,7875} \right)^2} + 20.{\left( {5,5 - 5,7875} \right)^2} + 16.{\left( {6,5 - 5,7875} \right)^2} + 15.{\left( {7,5 - 5,7875} \right)^2} + \\\left. { + 6.{{\left( {8,5 - 5,7875} \right)}^2} + 2.{{\left( {9,5 - 5,7875} \right)}^2}} \right] = \frac{{24671}}{{6400}} \approx 3,85\end{array}\)

Vậy c) đúng.

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(s = \sqrt {3,85} \approx 1,962\). Vậy d) đúng.

a) S.

b) Đ.

c) Đ.

d) Đ.

Giải bài 11 trang 96 SBT Toán 12 Cánh Diều: Tổng quan và Phương pháp giải

Bài 11 trang 96 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và Mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ chỉ phương, vectơ pháp tuyến, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương quan giữa đường thẳng và mặt phẳng.

Nội dung chi tiết bài 11 trang 96 SBT Toán 12 Cánh Diều

Bài 11 thường bao gồm các dạng bài tập sau:

  • Xác định vị trí tương quan giữa đường thẳng và mặt phẳng: Kiểm tra xem đường thẳng có nằm trong mặt phẳng, song song với mặt phẳng, cắt mặt phẳng hay không.
  • Tìm giao điểm của đường thẳng và mặt phẳng: Sử dụng phương pháp giải hệ phương trình để tìm tọa độ giao điểm.
  • Tính góc giữa đường thẳng và mặt phẳng: Áp dụng công thức tính góc giữa đường thẳng và mặt phẳng dựa trên vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng.
  • Tìm hình chiếu của đường thẳng lên mặt phẳng: Xác định phương trình đường thẳng là hình chiếu của đường thẳng ban đầu lên mặt phẳng.

Phương pháp giải bài 11 trang 96 SBT Toán 12 Cánh Diều hiệu quả

Để giải quyết bài 11 trang 96 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức và kỹ năng sau:

  1. Nắm vững định nghĩa và tính chất của vectơ chỉ phương, vectơ pháp tuyến.
  2. Thành thạo phương pháp viết phương trình đường thẳng, phương trình mặt phẳng.
  3. Hiểu rõ các điều kiện để đường thẳng và mặt phẳng có vị trí tương quan đặc biệt (song song, vuông góc, cắt nhau).
  4. Luyện tập giải nhiều bài tập tương tự để rèn luyện kỹ năng và kinh nghiệm.

Lời giải chi tiết bài 11 trang 96 SBT Toán 12 Cánh Diều (Ví dụ)

Bài 11: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Tìm giao điểm của d và (P).

Lời giải:

Thay phương trình tham số của đường thẳng d vào phương trình mặt phẳng (P), ta được:

2(1 + t) - (2 - t) + (3 + 2t) - 5 = 0

2 + 2t - 2 + t + 3 + 2t - 5 = 0

5t - 2 = 0

t = 2/5

Thay t = 2/5 vào phương trình tham số của đường thẳng d, ta được:

x = 1 + 2/5 = 7/5

y = 2 - 2/5 = 8/5

z = 3 + 2(2/5) = 3 + 4/5 = 19/5

Vậy giao điểm của d và (P) là I(7/5, 8/5, 19/5).

Tusach.vn - Nguồn tài liệu học Toán 12 uy tín

Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập trong sách giáo khoa và sách bài tập Toán 12 Cánh Diều. Chúng tôi cam kết mang đến cho bạn trải nghiệm học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.

Hãy truy cập Tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN