Tusach.vn xin giới thiệu lời giải chi tiết bài 9 trang 47 sách bài tập Toán 12 Cánh Diều. Bài giải này được xây dựng dựa trên chương trình học và đáp án chính thức của Bộ Giáo dục và Đào tạo.
Chúng tôi luôn cố gắng cung cấp những lời giải dễ hiểu, chính xác và đầy đủ nhất để giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho điểm (Ileft( { - 3;0;1} right)) và mặt phẳng (left( P right):x - 3y - 4z + 1 = 0). a) Điểm (Ileft( { - 3;0;1} right)) không thuộc mặt phẳng (left( P right)). b) Vectơ (overrightarrow n = left( {1; - 3;4} right)) là một vectơ pháp tuyến của mặt phẳng (left( P right)). c) Nếu mặt phẳng (left( Q right)) song song với mặt phẳng (left( P right)) thì vectơ (overrightarrow n = left( {1; -
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho điểm \(I\left( { - 3;0;1} \right)\) và mặt phẳng \(\left( P \right):x - 3y - 4z + 1 = 0\).
a) Điểm \(I\left( { - 3;0;1} \right)\) không thuộc mặt phẳng \(\left( P \right)\).
b) Vectơ \(\overrightarrow n = \left( {1; - 3;4} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).
c) Nếu mặt phẳng \(\left( Q \right)\) song song với mặt phẳng \(\left( P \right)\) thì vectơ \(\overrightarrow n = \left( {1; - 3;4} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( Q \right)\).
d) Mặt phẳng \(\left( R \right)\) đi qua điểm \(I\) và song song với \(\left( P \right)\) có phương trình là: \(x - 3y - 4z - 7 = 0\).
Phương pháp giải - Xem chi tiết
Điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) thuộc mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\) khi \(A{x_0} + B{y_0} + C{{\rm{z}}_0} + D = 0\).
‒ Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {A;B;C} \right)\) làm vectơ pháp tuyến có phương trình tổng quát là: \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\).
Lời giải chi tiết
Ta có: \( - 3 - 3.0 - 4.1 + 1 = - 6 \ne 0\) nên \(I\left( { - 3;0;1} \right)\) không thuộc mặt phẳng \(\left( P \right)\). Vậy a) đúng.
Vectơ \(\overrightarrow n = \left( {1; - 3;4} \right)\) không là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\). Vậy b) sai.
Vì \(\left( P \right)\parallel \left( Q \right)\) mà \(\overrightarrow n = \left( {1; - 3;4} \right)\) không là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\), tức là giá của \(\overrightarrow n \) không vuông góc với \(\left( P \right)\) nên giá của \(\overrightarrow n \) cũng không vuông góc với \(\left( Q \right)\). Do đó \(\overrightarrow n = \left( {1; - 3;4} \right)\) không là một vectơ pháp tuyến của mặt phẳng \(\left( Q \right)\). Vậy c) sai.
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow {n'} = \left( {1; - 3; - 4} \right)\).
Vì \(\left( P \right)\parallel \left( R \right)\) nên \(\overrightarrow {n'} = \left( {1; - 3; - 4} \right)\) cũng là một vectơ pháp tuyến của mặt phẳng \(\left( R \right)\).
Phương trình mặt phẳng \(\left( R \right)\) là:
\(1\left( {x + 3} \right) - 3\left( {y - 0} \right) - 4\left( {z - 1} \right) = 0 \Leftrightarrow x - 3y - 4{\rm{z}} + 7 = 0\). Vậy d) sai.
a) Đ.
b) S.
c) S.
d) S.
Bài 9 trang 47 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Bài 9 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 9 trang 47 SBT Toán 12 Cánh Diều một cách hiệu quả, học sinh cần nắm vững các kiến thức và kỹ năng sau:
Dưới đây là giải chi tiết từng phần của bài 9 trang 47 SBT Toán 12 Cánh Diều. (Lưu ý: Nội dung giải chi tiết sẽ được trình bày cụ thể cho từng câu hỏi trong bài tập.)
Câu a: Tính đạo hàm của hàm số f(x) = 2x3 - 5x2 + 7x - 1.
Giải:
f'(x) = d/dx (2x3) - d/dx (5x2) + d/dx (7x) - d/dx (1)
f'(x) = 6x2 - 10x + 7 - 0
f'(x) = 6x2 - 10x + 7
Trong quá trình giải bài tập, hãy chú ý đến các dấu ngoặc và thứ tự thực hiện các phép toán. Đừng quên kiểm tra lại kết quả để đảm bảo tính chính xác.
Ngoài sách bài tập, học sinh có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức và kỹ năng giải bài tập:
Tusach.vn hy vọng rằng lời giải chi tiết bài 9 trang 47 SBT Toán 12 Cánh Diều này sẽ giúp các em học sinh hiểu rõ hơn về kiến thức và kỹ năng giải bài tập đạo hàm. Chúc các em học tập tốt!
| Công thức | Mô tả |
|---|---|
| d/dx (c) = 0 | Đạo hàm của hằng số bằng 0 |
| d/dx (xn) = nxn-1 | Đạo hàm của hàm số lũy thừa |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập