Tusach.vn xin giới thiệu đáp án chi tiết bài 83 trang 38 Sách bài tập Toán 12 Cánh Diều. Bài giải được các thầy cô giáo có kinh nghiệm biên soạn, đảm bảo tính chính xác và dễ hiểu.
Chúng tôi luôn cố gắng cung cấp những tài liệu học tập tốt nhất để giúp các em học sinh nắm vững kiến thức và đạt kết quả cao trong các kỳ thi.
Cho hàm số (fleft( x right)) xác định trên (mathbb{R}) và có bảng xét dấu đạo hàm (f'left( x right)) như sau: Khẳng định nào dưới đây đúng? A. (fleft( { - 6} right) > fleft( { - 5} right)). B. (fleft( 1 right) > fleft( 2 right)). C. (fleft( 5 right) < fleft( 7 right)). D. (fleft( { - 3} right) > fleft( { - 1} right)).
Đề bài
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm \(f'\left( x \right)\) như sau:

Khẳng định nào dưới đây đúng?
A. \(f\left( { - 6} \right) > f\left( { - 5} \right)\). B. \(f\left( 1 \right) > f\left( 2 \right)\).
C. \(f\left( 5 \right) < f\left( 7 \right)\). D. \(f\left( { - 3} \right) > f\left( { - 1} \right)\).
Phương pháp giải - Xem chi tiết
Lập bảng biến thiên, dựa vào bảng biến thiên:
‒ Hàm số đồng biến trên khoảng \(\left( {a;b} \right)\) nếu \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right),\forall {x_1},{x_2} \in \left( {a;b} \right)\)
‒ Hàm số nghịch biến trên khoảng \(\left( {a;b} \right)\) nếu \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right),\forall {x_1},{x_2} \in \left( {a;b} \right)\)
Lời giải chi tiết
+ Đáp án A: Hàm số đồng biến trên \(\left( { - 6; - 5} \right)\) nên \(f\left( { - 6} \right) < f\left( { - 5} \right)\). Vậy A sai.
+ Đáp án B: Hàm số đồng biến trên \(\left( {1;2} \right)\) nên \(f\left( 1 \right) < f\left( 2 \right)\). Vậy B sai.
+ Đáp án C: Hàm số nghịch biến trên \(\left( {5;7} \right)\) nên \(f\left( 5 \right) > f\left( 7 \right)\). Vậy C sai.
+ Đáp án D: Hàm số nghịch biến trên khoảng \(\left( { - 3; - 1} \right)\) nên \(f\left( { - 3} \right) > f\left( { - 1} \right)\). Vậy D đúng.
Chọn D.
Bài 83 trang 38 Sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và Mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến quan hệ vị trí giữa đường thẳng và mặt phẳng.
Bài 83 thường bao gồm các dạng bài tập sau:
Ví dụ: Cho đường thẳng (d): x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa đường thẳng (d) và mặt phẳng (P).
Giải:
Tusach.vn là địa chỉ tin cậy cung cấp đáp án, lời giải chi tiết và các tài liệu học tập Toán 12 chất lượng. Chúng tôi luôn cập nhật những thông tin mới nhất và hữu ích nhất để giúp các em học sinh học tập hiệu quả. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chương | Bài | Liên kết |
|---|---|---|
| 1 | Bài 1 | Link bài 1 |
| 2 | Bài 2 | Link bài 2 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập