1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 62 trang 26 sách bài tập toán 12 - Cánh diều

Giải bài 62 trang 26 sách bài tập toán 12 - Cánh diều

Giải bài 62 trang 26 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu đáp án chi tiết bài 62 trang 26 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Cánh Diều, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn.

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{{x^2} - 3}}{{ - x - 1}}). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 1). b) Đồ thị hàm số có tiệm cận ngang là đường thẳng (y = - 1). c) Đồ thị hàm số có tiệm cận xiên là đường thẳng (y = - x). d) Giao điểm (I) của hai đường tiệm cận của đồ thị hàm số là (Ileft( { - 1;1} right)).

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số \(y = \frac{{{x^2} - 3}}{{ - x - 1}}\).

a) Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = - 1\).

b) Đồ thị hàm số có tiệm cận ngang là đường thẳng \(y = - 1\).

c) Đồ thị hàm số có tiệm cận xiên là đường thẳng \(y = - x\).

d) Giao điểm \(I\) của hai đường tiệm cận của đồ thị hàm số là \(I\left( { - 1;1} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 62 trang 26 sách bài tập toán 12 - Cánh diều 1

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):

\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc

\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)

Lời giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{{x^2} - 3}}{{ - x - 1}} = - \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{{x^2} - 3}}{{ - x - 1}} = + \infty \)

Vậy \(x = - 1\) là tiệm cận đứng của đồ thị hàm số đã cho. Vậy a) đúng.

• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3}}{{ - x - 1}} = - \infty ;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 3}}{{ - x - 1}} = + \infty \)

Vậy hàm số không có tiệm cận ngang. Vậy b) sai.

• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3}}{{x\left( { - x - 1} \right)}} = - 1\) và

\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{x^2} - 3}}{{ - x - 1}} + x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - x - 3}}{{ - x - 1}} = 1\)

Vậy đường thẳng \(y = - x + 1\) là tiệm cận xiên của đồ thị hàm số đã cho. Vậy c) sai.

Do đó, giao điểm của hai đường tiệm cận là \(I\left( { - 1;2} \right)\). Vậy d) sai.

a) Đ.

b) S.

c) S.

d) S.

Giải bài 62 trang 26 SBT Toán 12 Cánh Diều: Tổng quan và Phương pháp giải

Bài 62 trang 26 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 62 trang 26 SBT Toán 12 Cánh Diều

Để giải quyết bài 62 trang 26 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần thực hiện các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và những điều cần tìm.
  2. Xác định hàm số: Nếu bài toán cho một tình huống thực tế, bạn cần xây dựng hàm số mô tả tình huống đó.
  3. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm của hàm số.
  4. Giải phương trình đạo hàm: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.
  5. Xác định khoảng đơn điệu: Dựa vào dấu của đạo hàm để xác định khoảng đồng biến và nghịch biến của hàm số.
  6. Kết luận: Trả lời câu hỏi của bài toán dựa trên kết quả đã tìm được.

Ví dụ minh họa giải bài 62 trang 26 SBT Toán 12 Cánh Diều

Đề bài: (Giả định một đề bài cụ thể về đạo hàm và ứng dụng) ...

Giải:

  • Bước 1: ...
  • Bước 2: ...
  • Bước 3: ...
  • ...

Lưu ý khi giải bài 62 trang 26 SBT Toán 12 Cánh Diều

Để đạt kết quả tốt nhất khi giải bài 62 trang 26 SBT Toán 12 Cánh Diều, bạn nên:

  • Nắm vững kiến thức cơ bản về đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Tham khảo các nguồn tài liệu khác như sách giáo khoa, bài giảng của giáo viên, các trang web học toán trực tuyến.

Tại sao nên chọn tusach.vn để giải bài tập Toán 12 Cánh Diều?

Tusach.vn là một địa chỉ uy tín và đáng tin cậy để học tập và giải bài tập Toán 12 Cánh Diều. Chúng tôi cung cấp:

  • Đáp án chi tiết, chính xác và dễ hiểu.
  • Phương pháp giải bài tập rõ ràng, khoa học.
  • Cập nhật nhanh chóng các bài giải mới nhất.
  • Giao diện thân thiện, dễ sử dụng.
  • Hỗ trợ nhiệt tình từ đội ngũ giáo viên giàu kinh nghiệm.

Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích và giải quyết mọi khó khăn trong quá trình học Toán 12!

Bảng tổng hợp các dạng bài tập thường gặp trong chương này

Dạng bài tậpMục tiêu
Tính đạo hàmVận dụng quy tắc tính đạo hàm
Tìm cực trịSử dụng đạo hàm để tìm điểm cực trị
Khảo sát hàm sốXác định khoảng đồng biến, nghịch biến

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN