Tusach.vn xin giới thiệu đáp án chi tiết bài 38 trang 18 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải Toán 12 Cánh Diều, hỗ trợ tối đa cho quá trình học tập của bạn.
Biết giá trị lớn nhất của hàm số (y = frac{{{{left( {ln x} right)}^2}}}{x}) trên đoạn (left[ {1;{e^3}} right]) là (M = frac{a}{{{e^b}}}), trong đó (a,b) là các số tự nhiên. Khi đó ({a^2} + 2{b^3}) bằng: A. 22. B. 24. C. 32. D. 135.
Đề bài
Biết giá trị lớn nhất của hàm số \(y = \frac{{{{\left( {\ln x} \right)}^2}}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{a}{{{e^b}}}\), trong đó \(a,b\) là các số tự nhiên. Khi đó \({a^2} + 2{b^3}\) bằng:
A. 22.
B. 24.
C. 32.
D. 135.
Phương pháp giải - Xem chi tiết
Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):
Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).
Bước 3. So sánh các giá trị tìm được ở Bước 2.
Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).
Lời giải chi tiết
Ta có: \(y' = \frac{{{{\left[ {{{\left( {\ln x} \right)}^2}} \right]}^\prime }.x - {{\left( {\ln x} \right)}^2}.{{\left( x \right)}^\prime }}}{{{x^2}}} = \frac{{\frac{{2\ln {\rm{x}}}}{x}.x - {{\left( {\ln x} \right)}^2}}}{{{x^2}}} = \frac{{2\ln {\rm{x}} - {{\left( {\ln x} \right)}^2}}}{{{x^2}}}\)
Khi đó, trên đoạn \(\left[ {1;{e^3}} \right]\), \(y' = 0\) khi \(x = 1\) hoặc \(x = {e^2}\).
\(y\left( 1 \right) = 0;y\left( {{e^2}} \right) = \frac{4}{{{e^2}}};y\left( {{e^3}} \right) = \frac{9}{{{e^3}}}\).
Vậy \(\mathop {\max }\limits_{\left[ {1;{e^3}} \right]} y = \frac{4}{{{e^2}}}\) tại \(x = {e^2}\).
Vậy \(a = 4,b = 2 \Leftrightarrow {a^2} + 2{b^3} = 32\).
Chọn C.
Bài 38 trang 18 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Để giải bài 38 trang 18 SBT Toán 12 Cánh Diều một cách hiệu quả, bạn cần:
Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm y' của hàm số.
Giải:
Áp dụng công thức đạo hàm của hàm số lũy thừa, ta có:
y' = 3x2 - 6x
Tusach.vn là một website uy tín, cung cấp các bài giải Toán 12 Cánh Diều chính xác, dễ hiểu và nhanh chóng. Chúng tôi có đội ngũ giáo viên giàu kinh nghiệm, luôn cập nhật các bài giải mới nhất và hỗ trợ học sinh tối đa trong quá trình học tập.
Tusach.vn cam kết:
Hãy truy cập tusach.vn ngay hôm nay để giải bài 38 trang 18 SBT Toán 12 Cánh Diều và các bài tập Toán 12 khác!
| Chủ đề | Mức độ khó |
|---|---|
| Đạo hàm | Trung bình |
| Tích phân | Khó |
| Số phức | Trung bình |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập