Tusach.vn xin giới thiệu đến quý độc giả lời giải chi tiết bài 26 trang 75 sách bài tập Toán 12 Cánh Diều. Bài giải này được xây dựng dựa trên chương trình học Toán 12 hiện hành, đảm bảo tính chính xác và dễ hiểu.
Chúng tôi cung cấp không chỉ đáp án mà còn cả phương pháp giải, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Trong không gian với hệ toạ độ (Oxyz), cho (Mleft( {2;2; - 2} right),Nleft( { - 3;5;1} right),Pleft( {1; - 1; - 2} right)). a) Chứng minh rằng ba điểm (M,N,P) không thẳng hàng. b) Tính chu vi tam giác (MNP). c) Tính (cos widehat {NMP}).
Đề bài
Trong không gian với hệ toạ độ \(Oxyz\), cho \(M\left( {2;2; - 2} \right),N\left( { - 3;5;1} \right),P\left( {1; - 1; - 2} \right)\).
a) Chứng minh rằng ba điểm \(M,N,P\) không thẳng hàng.
b) Tính chu vi tam giác \(MNP\).
c) Tính \(\cos \widehat {NMP}\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng tính chất: Ba điểm \(A,B,C\) thẳng hàng nếu hai vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.
‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):
\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).
‒ Sử dụng công thức tính góc của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).
Lời giải chi tiết
a) Ta có: \(\overrightarrow {MN} = \left( { - 5;3;3} \right),\overrightarrow {MP} = \left( { - 1; - 3;0} \right),k\overrightarrow {MP} = \left( { - k; - 3k;0} \right)\).
Suy ra \(\overrightarrow {MN} \ne k\overrightarrow {MP} ,\forall k \in \mathbb{R}\).
Vậy ba điểm \(M,N,P\) không thẳng hàng.
b) Ta có:
\(\begin{array}{l}MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {3^2} + {3^2}} = \sqrt {43} ;\\MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 3} \right)}^2} + {0^2}} = \sqrt {10} ;\\NP = \left| {\overrightarrow {NP} } \right| = \sqrt {{{\left( {1 - \left( { - 3} \right)} \right)}^2} + {{\left( { - 1 - 5} \right)}^2} + {{\left( { - 2 - 1} \right)}^2}} = \sqrt {61} .\end{array}\)
Chu vi tam giác \(MNP\)là: \(\sqrt {43} + \sqrt {10} + \sqrt {61} \).
c) Trong tam giác \(MNP\), ta có:
\(\cos \widehat {NMP} = \cos \left( {\overrightarrow {MN} ,\overrightarrow {MP} } \right) = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{{\left( { - 5} \right).\left( { - 1} \right) + 3.\left( { - 3} \right) + 3.0}}{{\sqrt {43} .\sqrt {10} }} = - \frac{4}{{\sqrt {430} }}\).
Bài 26 trang 75 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về Đạo hàm của hàm số hợp. Đây là một chủ đề quan trọng trong chương trình Toán 12, đòi hỏi học sinh phải nắm vững các quy tắc đạo hàm cơ bản và cách áp dụng chúng vào các hàm số phức tạp hơn.
Để giải bài 26 trang 75 SBT Toán 12 Cánh Diều một cách hiệu quả, học sinh cần thực hiện theo các bước sau:
Ví dụ: Tính đạo hàm của hàm số y = sin(x2 + 1)
Giải:
Để tránh sai sót khi giải bài tập về đạo hàm hàm hợp, học sinh cần lưu ý những điều sau:
Tusach.vn là địa chỉ tin cậy dành cho học sinh, sinh viên và những người yêu thích môn Toán. Chúng tôi cung cấp:
Hãy truy cập Tusach.vn ngay hôm nay để học Toán 12 hiệu quả và đạt kết quả cao!
| Chủ đề | Liên kết |
|---|---|
| Giải bài tập Toán 12 Cánh Diều | https://tusach.vn/toan-12-canh-dieu |
| Đạo hàm của hàm số hợp | https://tusach.vn/dao-ham-ham-so-hop |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập