Tusach.vn xin giới thiệu lời giải chi tiết bài 65 trang 69 sách bài tập Toán 12 Cánh Diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Cánh Diều, đáp ứng nhu cầu học tập của học sinh.
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng (left( {{P_1}} right):x + 4y - 2z + 2 = 0,left( {{P_2}} right): - 2x + y + z + 3 = 0). a) Vectơ (overrightarrow {{n_1}} = left( {1;4; - 2} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_1}} right)). b) Vectơ (overrightarrow {{n_2}} = left( {2;1;1} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_2}} right)). c) (overrightarrow {{n_1}} .overrightarrow {{n_2}}
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho hai mặt phẳng \(\left( {{P_1}} \right):x + 4y - 2z + 2 = 0,\left( {{P_2}} \right): - 2x + y + z + 3 = 0\).
a) Vectơ \(\overrightarrow {{n_1}} = \left( {1;4; - 2} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right)\).
b) Vectơ \(\overrightarrow {{n_2}} = \left( {2;1;1} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_2}} \right)\).
c) \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0\) với \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) lần lượt là vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).
d) Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) vuông góc với nhau.
Phương pháp giải - Xem chi tiết
Mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\) nhận \(\overrightarrow n = \left( {A,B,C} \right)\) làm vectơ pháp tuyến.
Lời giải chi tiết
Mặt phẳng \(\left( {{P_1}} \right):x + 4y - 2z + 2 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {1;4; - 2} \right)\). Vậy a) đúng.
Mặt phẳng \(\left( {{P_2}} \right): - 2x + y + z + 3 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( { - 2;1;1} \right) \ne \left( {2;1;1} \right)\). Vậy b) sai.
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.\left( { - 2} \right) + 4.1 + \left( { - 2} \right).1 = 0\). Vậy c) đúng.
Vì \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0\) nên \(\overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \). Do đó hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) vuông góc với nhau. Vậy d) đúng.
a) Đ.
b) S.
c) Đ.
d) Đ.
Bài 65 trang 69 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề như số phức, hàm số, đạo hàm, tích phân và hình học không gian. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, đòi hỏi sự tư duy logic và khả năng tính toán chính xác.
Bài 65 thường bao gồm nhiều câu hỏi nhỏ, mỗi câu hỏi tập trung vào một khía cạnh khác nhau của kiến thức đã học. Các dạng bài tập thường gặp bao gồm:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 65 trang 69 sách bài tập Toán 12 Cánh Diều:
Đề bài: ... (Nội dung đề bài)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải, công thức sử dụng và kết quả cuối cùng)
Đề bài: ... (Nội dung đề bài)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải, công thức sử dụng và kết quả cuối cùng)
Để giải bài tập Toán 12 Cánh Diều hiệu quả, học sinh cần:
Tusach.vn là một trang web học tập trực tuyến uy tín, cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập Toán 12 Cánh Diều. Chúng tôi có đội ngũ giáo viên giàu kinh nghiệm, luôn cập nhật nhanh chóng và chính xác các lời giải bài tập mới nhất. Ngoài ra, chúng tôi còn cung cấp nhiều tài liệu tham khảo hữu ích, giúp học sinh học tập hiệu quả hơn.
Hy vọng rằng bài viết này đã cung cấp cho bạn những thông tin hữu ích về cách giải bài 65 trang 69 sách bài tập Toán 12 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập