Tusach.vn xin giới thiệu lời giải chi tiết bài 3 trang 10 sách bài tập Toán 12 Cánh Diều. Bài giải này được các giáo viên có kinh nghiệm biên soạn, đảm bảo tính chính xác và dễ hiểu.
Chúng tôi hy vọng rằng, với lời giải này, các em học sinh sẽ có thêm công cụ hỗ trợ học tập và ôn luyện môn Toán 12 hiệu quả.
Cho hàm số (y = fleft( x right)) có đạo hàm (f'left( x right) = - xleft( {2x - 5} right),forall x in mathbb{R}). Khẳng định nào dưới đây đúng?
Đề bài
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = - x\left( {2x - 5} \right),\forall x \in \mathbb{R}\). Khẳng định nào dưới đây đúng?
A. \(f\left( { - 2} \right) < f\left( { - 1} \right)\).
B. \(f\left( 0 \right) > f\left( 2 \right)\).
C. \(f\left( 3 \right) > f\left( 5 \right)\).
D. \(f\left( 3 \right) > f\left( 2 \right)\).
Phương pháp giải - Xem chi tiết
Lập bảng biến thiên, dựa vào bảng biến thiên:
‒ Hàm số đồng biến trên khoảng \(\left( {a;b} \right)\) nếu \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right),\forall {x_1},{x_2} \in \left( {a;b} \right)\)
‒ Hàm số nghịch biến trên khoảng \(\left( {a;b} \right)\) nếu \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right),\forall {x_1},{x_2} \in \left( {a;b} \right)\)
Lời giải chi tiết
\(f'\left( x \right) = 0 \Leftrightarrow - x\left( {2x - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{5}{2}\end{array} \right.\)
Bảng biến thiên của hàm số:

+ Đáp án A: Hàm số nghịch biến trên \(\left( { - 2; - 1} \right)\) nên \(f\left( { - 2} \right) > f\left( { - 1} \right)\). Vậy A sai.
+ Đáp án B: Hàm số đồng biến trên \(\left( {0;2} \right)\) nên \(f\left( 0 \right) < f\left( 2 \right)\). Vậy B sai.
+ Đáp án C: Hàm số nghịch biến trên \(\left( {3;5} \right)\) nên \(f\left( 3 \right) > f\left( 5 \right)\). Vậy C đúng.
+ Đáp án D: Hàm số đồng biến trên \(\left( {2;\frac{5}{2}} \right)\) và nghịch biến trên khoảng \(\left( {\frac{5}{2};3} \right)\) nên chưa xác định được mối liên hệ giữa \(f\left( 3 \right)\) và \(f\left( 2 \right)\). Vậy D sai.
Chọn C.
Bài 3 trang 10 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm đã học để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học khác ở bậc đại học.
Bài 3 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 3 trang 10 SBT Toán 12 Cánh Diều:
Đề bài: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1
Lời giải:
f'(x) = 3x2 + 4x - 5
Đề bài: Tính đạo hàm của hàm số g(x) = sin(2x) + cos(x)
Lời giải:
g'(x) = 2cos(2x) - sin(x)
Đề bài: Tìm đạo hàm của hàm số h(x) = ex + ln(x)
Lời giải:
h'(x) = ex + 1/x
Để giải bài tập đạo hàm một cách hiệu quả, bạn nên:
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm:
Hãy truy cập tusach.vn ngay hôm nay để có được những tài liệu học tập tốt nhất và đạt kết quả cao trong kỳ thi THPT Quốc gia!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập