1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 35 trang 59 sách bài tập toán 12 - Cánh diều

Giải bài 35 trang 59 sách bài tập toán 12 - Cánh diều

Giải bài 35 trang 59 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 35 trang 59 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác đáp án các bài tập trong sách bài tập Toán 12 Cánh Diều.

Xác định vị trí tương đối của hai đường thẳng ({Delta _1},{Delta _2}) trong mỗi trường hợp sau: a) ({Delta _1}:frac{{x + 7}}{5} = frac{{y - 1}}{{ - 7}} = frac{{z + 2}}{{ - 2}}) và ({Delta _2}:left{ begin{array}{l}x = - 5 - 3t\y = - 10 - 4t\z = 3 + 7tend{array} right.) (với (t) là tham số); b) ({Delta _1}:left{ begin{array}{l}x = - 2 + 5t\y = 1 - t\z = 3tend{array} right.) (với (t) là tham số) và ({Delta _2}:frac{{x + 2}}{4} = frac{{y - 1}}{5} = frac{{z

Đề bài

Xác định vị trí tương đối của hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau:

a) \({\Delta _1}:\frac{{x + 7}}{5} = \frac{{y - 1}}{{ - 7}} = \frac{{z + 2}}{{ - 2}}\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 5 - 3t\\y = - 10 - 4t\\z = 3 + 7t\end{array} \right.\) (với \(t\) là tham số);

b) \({\Delta _1}:\left\{ \begin{array}{l}x = - 2 + 5t\\y = 1 - t\\z = 3t\end{array} \right.\) (với \(t\) là tham số) và \({\Delta _2}:\frac{{x + 2}}{4} = \frac{{y - 1}}{5} = \frac{{z - 1}}{{ - 6}}\);

c) \({\Delta _1}:\frac{x}{3} = \frac{{y + 5}}{2} = \frac{{z - 1}}{{ - 3}}\) và \({\Delta _2}:\frac{{x - 1}}{{ - 6}} = \frac{{y - 3}}{{ - 4}} = \frac{{z - 1}}{6}\).

Phương pháp giải - Xem chi tiếtGiải bài 35 trang 59 sách bài tập toán 12 - Cánh diều 1

Xét vị trí tương đối của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) với: \({\Delta _1}\) đi qua điểm \({M_1}\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} \) và \({\Delta _2}\) đi qua điểm \({M_2}\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} \):

• \({\Delta _1}\parallel {\Delta _2}\) nếu \(\left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right] \ne \overrightarrow 0 \end{array} \right.\).

• \({\Delta _1}\) cắt \({\Delta _2}\) nếu \(\left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = 0\end{array} \right.\).

• \({\Delta _1}\) và \({\Delta _2}\) chéo nhau nếu \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} \ne 0\).

Lời giải chi tiết

a) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}\left( { - 7;1; - 2} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {5; - 7; - 2} \right)\).

Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}\left( { - 5; - 10;3} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 3; - 4;7} \right)\).

Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 57; - 29; - 41} \right),\overrightarrow {{M_1}{M_2}} = \left( {2; - 11;5} \right)\).

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = - 57.2 - 29.\left( { - 11} \right) - 41.5 = 0\). Vậy \({\Delta _1}\) cắt \({\Delta _2}\).

b) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}\left( { - 2;1;0} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {5; - 1;3} \right)\).

Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}\left( { - 2;1;1} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {4;5; - 6} \right)\).

Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 9;42;29} \right),\overrightarrow {{M_1}{M_2}} = \left( {0;0;1} \right)\).

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = - 9.0 + 42.0 + 29.1 = 29 \ne 0\). Vậy \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

c) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}\left( {0; - 5;1} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {3;2; - 3} \right)\).

Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}\left( {1;3;1} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 6; - 4;6} \right)\).

Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {0;0;0} \right) = \overrightarrow 0 ,\overrightarrow {{M_1}{M_2}} = \left( {1;8;0} \right)\).

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right] = \left( {24; - 3;22} \right) \ne \overrightarrow 0 \). Vậy \({\Delta _1}\parallel {\Delta _2}\).

Giải bài 35 trang 59 SBT Toán 12 Cánh Diều: Tổng quan và Phương pháp giải

Bài 35 trang 59 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề như đạo hàm, tích phân, hình học không gian và hình học giải tích. Bài tập này thường yêu cầu học sinh vận dụng linh hoạt các công thức, định lý đã học để giải quyết các bài toán thực tế.

Nội dung chi tiết bài 35 trang 59 SBT Toán 12 Cánh Diều

Bài 35 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số.
  • Dạng 2: Tìm cực trị của hàm số.
  • Dạng 3: Giải phương trình, bất phương trình chứa đạo hàm.
  • Dạng 4: Tính tích phân.
  • Dạng 5: Ứng dụng đạo hàm để giải quyết các bài toán về tối ưu hóa.

Lời giải chi tiết bài 35 trang 59 SBT Toán 12 Cánh Diều

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 35 trang 59 SBT Toán 12 Cánh Diều, Tusach.vn xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu 1: (Ví dụ minh họa)

Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm của hàm số.

Lời giải:

y' = 3x2 - 6x

Câu 2: (Ví dụ minh họa)

Tìm cực trị của hàm số y = x3 - 3x2 + 2.

Lời giải:

y' = 3x2 - 6x

Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.

Lập bảng biến thiên, ta thấy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Mẹo giải bài tập Toán 12 Cánh Diều hiệu quả

Để giải bài tập Toán 12 Cánh Diều hiệu quả, các em cần:

  • Nắm vững kiến thức cơ bản về đạo hàm, tích phân, hình học không gian và hình học giải tích.
  • Luyện tập thường xuyên các bài tập khác nhau để rèn luyện kỹ năng giải toán.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi, phần mềm vẽ đồ thị để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo, sách giải bài tập để hiểu rõ hơn về các phương pháp giải toán.

Tại sao nên chọn Tusach.vn để học Toán 12?

Tusach.vn là một website học tập trực tuyến uy tín, cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm:

  • Sách giáo khoa, sách bài tập Toán 12.
  • Đáp án chi tiết các bài tập trong sách giáo khoa, sách bài tập.
  • Các bài giảng video, bài tập trắc nghiệm online.
  • Diễn đàn trao đổi học tập, nơi các em có thể đặt câu hỏi và nhận được sự hỗ trợ từ các thầy cô giáo và các bạn học sinh khác.

Hãy truy cập Tusach.vn ngay hôm nay để học Toán 12 hiệu quả và đạt kết quả cao!

Bảng tổng hợp các dạng bài tập thường gặp

Dạng bài tậpNội dungPhương pháp giải
Tính đạo hàmTìm đạo hàm của hàm sốSử dụng các quy tắc tính đạo hàm
Tìm cực trịTìm điểm cực đại, cực tiểu của hàm sốGiải phương trình đạo hàm bằng 0 và xét dấu đạo hàm

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN