1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 13 trang 48 sách bài tập toán 12 - Cánh diều

Giải bài 13 trang 48 sách bài tập toán 12 - Cánh diều

Giải bài 13 trang 48 Sách bài tập Toán 12 Cánh Diều

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 13 trang 48 sách bài tập Toán 12 Cánh Diều. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất.

Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để tự tin giải quyết các bài toán tương tự.

Lập phương trình mặt phẳng (left( P right)) đi qua điểm (Kleft( {4; - 3;7} right)) và song song với mặt phẳng (left( Q right):3x - 2y + 4z + 7 = 0).

Đề bài

Lập phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(K\left( {4; - 3;7} \right)\) và song song với mặt phẳng \(\left( Q \right):3x - 2y + 4z + 7 = 0\).

Phương pháp giải - Xem chi tiếtGiải bài 13 trang 48 sách bài tập toán 12 - Cánh diều 1

Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {A;B;C} \right)\) làm vectơ pháp tuyến có phương trình tổng quát là: \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\).

Lời giải chi tiết

Mặt phẳng \(\left( Q \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 2;4} \right)\).

Vì \(\left( P \right)\parallel \left( Q \right)\) nên \(\overrightarrow n = \left( {3; - 2;4} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\).

Phương trình mặt phẳng \(\left( P \right)\) là:

\(3\left( {x - 4} \right) - 2\left( {y + 3} \right) + 4\left( {z - 7} \right) = 0 \Leftrightarrow 3x - 2y + 4z - 46 = 0\).

Giải bài 13 trang 48 Sách bài tập Toán 12 Cánh Diều: Tổng quan và Phương pháp giải

Bài 13 trang 48 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và Mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ chỉ phương, vectơ pháp tuyến, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến quan hệ vị trí giữa đường thẳng và mặt phẳng.

Nội dung chi tiết bài 13 trang 48 SBT Toán 12 Cánh Diều

Bài 13 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vị trí tương đối giữa đường thẳng và mặt phẳng. Học sinh cần kiểm tra xem đường thẳng có nằm trong mặt phẳng, song song với mặt phẳng hay cắt mặt phẳng.
  • Dạng 2: Tìm giao điểm của đường thẳng và mặt phẳng. Sử dụng phương pháp giải hệ phương trình để tìm tọa độ giao điểm.
  • Dạng 3: Tính góc giữa đường thẳng và mặt phẳng. Áp dụng công thức tính góc giữa đường thẳng và mặt phẳng dựa trên vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng.
  • Dạng 4: Tìm hình chiếu của đường thẳng lên mặt phẳng. Xác định phương trình đường thẳng là hình chiếu của đường thẳng ban đầu lên mặt phẳng.

Lời giải chi tiết bài 13 trang 48 SBT Toán 12 Cánh Diều

Để giúp bạn hiểu rõ hơn, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài 13:

Câu a)

(Giả sử đây là nội dung câu a của bài 13, cần thay thế bằng nội dung thực tế)

Lời giải: ... (Giải thích chi tiết từng bước giải, sử dụng công thức và lý thuyết liên quan). Kết luận: ...

Câu b)

(Giả sử đây là nội dung câu b của bài 13, cần thay thế bằng nội dung thực tế)

Lời giải: ... (Giải thích chi tiết từng bước giải, sử dụng công thức và lý thuyết liên quan). Kết luận: ...

Mẹo giải nhanh và hiệu quả

Để giải các bài tập về đường thẳng và mặt phẳng một cách nhanh chóng và hiệu quả, bạn nên:

  • Nắm vững các định nghĩa, định lý và công thức liên quan.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng sơ đồ hình học để trực quan hóa bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Các trang web học Toán trực tuyến
  • Các video bài giảng trên YouTube

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 13 trang 48 sách bài tập Toán 12 Cánh Diều một cách hiệu quả. Hãy luyện tập thường xuyên để nâng cao khả năng giải toán của bạn. Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN