Tusach.vn xin giới thiệu lời giải chi tiết bài 17 trang 48 sách bài tập Toán 12 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng nhất để hỗ trợ học sinh trong quá trình học tập.
Cho hình chóp (S.ABC) thoả mãn (widehat {ASB} = widehat {BSC} = widehat {CSA} = {90^ circ }). Gọi (H) là hình chiếu vuông góc của (S) trên mặt phẳng (left( {ABC} right)). Chứng minh rằng (frac{1}{{S{H^2}}} = frac{1}{{S{A^2}}} + frac{1}{{S{B^2}}} + frac{1}{{S{C^2}}}).
Đề bài
Cho hình chóp \(S.ABC\) thoả mãn \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA} = {90^ \circ }\). Gọi \(H\) là hình chiếu vuông góc của \(S\) trên mặt phẳng \(\left( {ABC} \right)\). Chứng minh rằng
\(\frac{1}{{S{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{B^2}}} + \frac{1}{{S{C^2}}}\).
Phương pháp giải - Xem chi tiết
Gắn vào hệ trục toạ độ và sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.
Lời giải chi tiết
Đặt \(SA = a,SB = b,SC = c\left( {a,b,c > 0} \right)\). Vì các đường thẳng \(SA,SB,SC\) đôi một vuông góc nên có thể gắn hệ trục toạ độ \(Oxyz\) thoả mãn \(S\left( {0;0;0} \right),A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\).
Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\) hay \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1 = 0\).
Khi đó: \(SH = d\left( {S,\left( {ABC} \right)} \right) = \frac{{\left| {\frac{0}{a} + \frac{0}{b} + \frac{0}{c} - 1} \right|}}{{\sqrt {{{\left( {\frac{1}{a}} \right)}^2} + {{\left( {\frac{1}{b}} \right)}^2} + {{\left( {\frac{1}{c}} \right)}^2}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }}\).
Vậy \(\frac{1}{{S{H^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{B^2}}} + \frac{1}{{S{C^2}}}\).
Bài 17 trang 48 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề như đường thẳng và mặt phẳng trong không gian, quan hệ song song, quan hệ vuông góc, và các ứng dụng của chúng. Bài tập này thường yêu cầu học sinh vận dụng các định lý, tính chất đã học để giải quyết các bài toán thực tế.
Bài 17 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 17 trang 48 SBT Toán 12 Cánh Diều, Tusach.vn xin trình bày lời giải chi tiết cho từng câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Lời giải:
Tính khoảng cách từ điểm A đến mặt phẳng (SCD).
Lời giải:
(Lời giải chi tiết sẽ được trình bày tương tự như câu a, bao gồm các bước phân tích, sử dụng công thức và tính toán cụ thể)
Tusach.vn là website cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập Toán 12 Cánh Diều và các môn học khác. Chúng tôi luôn cập nhật những nội dung mới nhất và chất lượng nhất để hỗ trợ học sinh trong quá trình học tập. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu hữu ích và nâng cao kết quả học tập của bạn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập