Tusach.vn xin giới thiệu lời giải chi tiết bài 73 trang 71 sách bài tập Toán 12 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng nhất, hỗ trợ tối đa cho quá trình học tập của các bạn.
Tính góc giữa hai mặt phẳng (left( {{P_1}} right)) và (left( {{P_2}} right)) (làm tròn kết quả đến hàng đơn vị), biết (left( {{P_1}} right):5x + 12y - 13z - 14 = 0) và (left( {{P_2}} right):13x - 5y - 12z + 7 = 0).
Đề bài
Tính góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) (làm tròn kết quả đến hàng đơn vị), biết \(\left( {{P_1}} \right):5x + 12y - 13z - 14 = 0\) và \(\left( {{P_2}} \right):13x - 5y - 12z + 7 = 0\).
Phương pháp giải - Xem chi tiết
Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có:
\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).
Lời giải chi tiết
Mặt phẳng \(\left( {{P_1}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {5;12; - 13} \right)\).
Mặt phẳng \(\left( {{P_2}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {13; - 5; - 12} \right)\).
Côsin của góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) bằng:
\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {5.13 + 12.\left( { - 5} \right) - 13.\left( { - 12} \right)} \right|}}{{\sqrt {{5^2} + {{12}^2} + {{\left( { - 13} \right)}^2}} .\sqrt {{{13}^2} + {{\left( { - 5} \right)}^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{161}}{{338}}\).
Vậy \(\left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) \approx {62^ \circ }\).
Bài 73 trang 71 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Số phức. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép toán trên số phức, tìm module của số phức, và giải các phương trình liên quan đến số phức.
Bài 73 thường bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, Tusach.vn xin trình bày lời giải chi tiết cho từng câu hỏi:
Cho hai số phức z1 = 2 + 3i và z2 = 1 - i. Tính z1 + z2.
Lời giải:
z1 + z2 = (2 + 3i) + (1 - i) = (2 + 1) + (3 - 1)i = 3 + 2i
Tìm module của số phức z = 4 - 5i.
Lời giải:
|z| = √(42 + (-5)2) = √(16 + 25) = √41
Để giải nhanh các bài tập về số phức, bạn nên nắm vững các công thức sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 Cánh Diều và các tài liệu ôn thi THPT Quốc gia.
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho tất cả các bài tập trong sách giáo khoa và sách bài tập Toán 12 Cánh Diều. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập của bạn!
| Chủ đề | Nội dung |
|---|---|
| Bài tập liên quan | Bài 74, 75, 76 trang 71-73 SBT Toán 12 Cánh Diều |
| Tài liệu tham khảo | Sách giáo khoa Toán 12 Cánh Diều, các đề thi thử THPT Quốc gia |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập