Tusach.vn xin giới thiệu lời giải chi tiết bài 13 trang 95 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác đáp án các bài tập trong sách bài tập Toán 12 Cánh Diều.
Trước khi đưa ra thị trường một sản phẩm, công ty phỏng vấn 800 khách hàng và được kết quả là 550 người nói sẽ mua, còn 250 người nói sẽ không mua. Theo kinh nghiệm của nhà sản xuất thì trong những người nói sẽ mua sẽ có 60% số người chắc chắn mua, còn trong những người nói sẽ không mua lại có 1% người chắc chắn mua. Chọn ngẫu nhiên một khách hàng. Xác suất chọn được khách hàng chắc chắn mua là bao nhiêu?
Đề bài
Trước khi đưa ra thị trường một sản phẩm, công ty phỏng vấn 800 khách hàng và được kết quả là 550 người nói sẽ mua, còn 250 người nói sẽ không mua. Theo kinh nghiệm của nhà sản xuất thì trong những người nói sẽ mua sẽ có 60% số người chắc chắn mua, còn trong những người nói sẽ không mua lại có 1% người chắc chắn mua. Chọn ngẫu nhiên một khách hàng. Xác suất chọn được khách hàng chắc chắn mua là bao nhiêu?
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính xác suất toàn phần: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết
Xét các biến cố:
\(A\): “Khách hàng được chọn chắc chắn mua”;
\(B\): “Khách hàng được chọn nói sẽ mua”.
Công ty phỏng vấn 800 khách hàng và được kết quả là 550 người nói sẽ mua, còn 250 người nói sẽ không mua nên ta có \(P\left( B \right) = \frac{{550}}{{800}} = \frac{{11}}{{16}};P\left( {\overline B } \right) = \frac{{250}}{{800}} = \frac{5}{{16}}\).
Trong những người nói sẽ mua sẽ có 60% số người chắc chắn mua nên ta có \(P\left( {A|B} \right) = 0,6\).
Trong những người nói sẽ không mua lại có 1% người chắc chắn mua nên ta có \(P\left( {A|\overline B } \right) = 0,01\).
Ta có: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{{11}}{{16}}.0,6 + \frac{5}{{16}}.0,01 = \frac{{133}}{{320}}\).
Bài 13 trang 95 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và Mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ chỉ phương, vectơ pháp tuyến, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến quan hệ vị trí giữa đường thẳng và mặt phẳng.
Bài 13 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta cùng xét một ví dụ cụ thể:
Ví dụ: Cho đường thẳng (d): x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa (d) và (P).
Để giải nhanh và hiệu quả các bài tập về đường thẳng và mặt phẳng, bạn nên:
Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập trong sách giáo khoa và sách bài tập Toán 12 Cánh Diều. Chúng tôi cam kết mang đến cho bạn trải nghiệm học tập tốt nhất. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
| Công thức | Mô tả |
|---|---|
| Góc giữa đường thẳng và mặt phẳng | sin(φ) = |a.n| / (|a||n|) |
| Khoảng cách từ điểm M(x0, y0, z0) đến mặt phẳng (P): Ax + By + Cz + D = 0 | d = |Ax0 + By0 + Cz0 + D| / √(A² + B² + C²) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập