1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 20 trang 96 sách bài tập toán 12 - Cánh diều

Giải bài 20 trang 96 sách bài tập toán 12 - Cánh diều

Giải bài 20 trang 96 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 20 trang 96 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Cánh Diều, đáp ứng nhu cầu học tập của học sinh.

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho các biến cố (A,B) thoả mãn (0 < Pleft( A right) < 1,0 < Pleft( B right) < 1). a) (Pleft( B right) = Pleft( A right).Pleft( {B|A} right) + Pleft( {overline A } right).Pleft( {B|overline A } right)). b) (Pleft( {A|B} right) = frac{{Pleft( {A cap B} right)}}{{Pleft( B right)}}). c) (Pleft( {A|B} right) = frac{{Pleft( B right).Pleft( {B|A} right)}}{{Pleft( A right)}}). d) (Plef

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).

Cho các biến cố \(A,B\) thoả mãn \(0 < P\left( A \right) < 1,0 < P\left( B \right) < 1\).

a) \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\).

b) \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).

c) \(P\left( {A|B} \right) = \frac{{P\left( B \right).P\left( {B|A} \right)}}{{P\left( A \right)}}\).

d) \(P\left( A \right) = P\left( {A|B} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 20 trang 96 sách bài tập toán 12 - Cánh diều 1

‒ Sử dụng công thức tính xác suất toàn phần: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).

‒ Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).

‒ Sử dụng công thức Bayes: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).

Lời giải chi tiết

Theo công thức tính xác suất toàn phần ta có: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\). Vậy a) đúng.

Theo công thức tính xác suất của \(A\) với điều kiện \(B\) ta có: \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\). Vậy b) đúng.

Theo công thức Bayes: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\). Vậy c) sai.

Theo công thức tính xác suất toàn phần ta có: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\). Vậy d) sai.

a) Đ.

b) Đ.

c) S.

d) S.

Giải bài 20 trang 96 SBT Toán 12 Cánh Diều: Tổng quan và Phương pháp giải

Bài 20 trang 96 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và Mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng thực tế.

Nội dung chi tiết bài 20 trang 96 SBT Toán 12 Cánh Diều

Bài 20 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vị trí tương đối giữa đường thẳng và mặt phẳng (song song, cắt, nằm trong).
  • Dạng 2: Tính khoảng cách từ điểm đến mặt phẳng.
  • Dạng 3: Tìm giao điểm của đường thẳng và mặt phẳng.
  • Dạng 4: Lập phương trình đường thẳng, mặt phẳng thỏa mãn các điều kiện cho trước.

Hướng dẫn giải chi tiết từng bài tập

Để giải quyết các bài tập trong bài 20 trang 96 SBT Toán 12 Cánh Diều, học sinh cần nắm vững các kiến thức sau:

  1. Vectơ chỉ phương của đường thẳng:a = (ax, ay, az)
  2. Vectơ pháp tuyến của mặt phẳng:n = (A, B, C)
  3. Phương trình đường thẳng:d: x = x0 + at, y = y0 + bt, z = z0 + ct
  4. Phương trình mặt phẳng: A(x - x0) + B(y - y0) + C(z - z0) = 0

Ví dụ minh họa

Bài tập: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa d và (P).

Giải: Vectơ chỉ phương của da = (1, -1, 2). Vectơ pháp tuyến của (P) là n = (2, -1, 1). Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 5 ≠ 0. Vậy đường thẳng d và mặt phẳng (P) cắt nhau.

Lưu ý khi giải bài tập

Khi giải các bài tập về đường thẳng và mặt phẳng, học sinh cần chú ý:

  • Kiểm tra kỹ các giả thiết của bài toán.
  • Sử dụng đúng công thức và phương pháp giải.
  • Biểu diễn kết quả một cách chính xác và rõ ràng.

Tusach.vn – Đồng hành cùng bạn học Toán 12

Tusach.vn luôn nỗ lực cung cấp những lời giải bài tập Toán 12 Cánh Diều chính xác, dễ hiểu và đầy đủ nhất. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN