Tusach.vn xin giới thiệu lời giải chi tiết bài 50 trang 23 sách bài tập Toán 12 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập Toán 12.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Cánh Diều, đáp ứng nhu cầu học tập của học sinh.
Tiệm cận đứng, tiệm cận ngang của đồ thị hàm số \(y = \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}}\) là: A. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{1}{3}\). B. Tiệm cận đứng là đường thẳng \(x = \frac{7}{2}\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\). C. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{2}{3}\). D. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\).
Đề bài
Tiệm cận đứng, tiệm cận ngang của đồ thị hàm số \(y = \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}}\) là:
A. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{1}{3}\).
B. Tiệm cận đứng là đường thẳng \(x = \frac{7}{2}\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\).
C. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{2}{3}\).
D. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\).
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết
Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 2 \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}} = \mathop {\lim }\limits_{x \to {2^ - }} \left( { - \frac{2}{3} - \frac{3}{{6 - 3{\rm{x}}}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - \frac{2}{3} - \frac{3}{{6 - 3{\rm{x}}}}} \right) = + \infty \)
Vậy \(x = 2\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}} = - \frac{2}{3};\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}} = - \frac{2}{3}\)
Vậy \(y = - \frac{2}{3}\) là tiệm cận ngang của đồ thị hàm số đã cho.
Chọn D.
Bài 50 trang 23 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Để giúp các em học sinh hiểu rõ hơn về nội dung bài tập, Tusach.vn xin trình bày chi tiết lời giải của từng câu hỏi trong bài 50 trang 23 SBT Toán 12 Cánh Diều:
Giải thích chi tiết phương pháp giải và đưa ra đáp án chính xác. Ví dụ: Bài tập này yêu cầu tính đạo hàm của hàm số. Để giải, ta sử dụng quy tắc đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp. Sau khi áp dụng các quy tắc này, ta thu được kết quả là...
Giải thích chi tiết phương pháp giải và đưa ra đáp án chính xác. Ví dụ: Bài tập này yêu cầu tìm cực trị của hàm số. Để giải, ta tìm các điểm dừng của hàm số, sau đó xét dấu đạo hàm bậc nhất để xác định loại cực trị.
Giải thích chi tiết phương pháp giải và đưa ra đáp án chính xác. Ví dụ: Bài tập này yêu cầu giải phương trình lượng giác. Để giải, ta sử dụng các công thức lượng giác cơ bản và các phương pháp biến đổi phương trình lượng giác.
Tusach.vn là một website uy tín, chuyên cung cấp lời giải bài tập Toán 12 Cánh Diều chính xác, dễ hiểu và nhanh chóng. Chúng tôi có đội ngũ giáo viên giàu kinh nghiệm, luôn cập nhật các lời giải mới nhất và đáp ứng nhu cầu học tập của học sinh. Ngoài ra, Tusach.vn còn cung cấp nhiều tài liệu học tập hữu ích khác, giúp các em học sinh học tốt môn Toán.
Hy vọng rằng lời giải chi tiết bài 50 trang 23 SBT Toán 12 Cánh Diều của Tusach.vn sẽ giúp các em học sinh hiểu rõ hơn về nội dung bài tập và đạt kết quả tốt trong môn Toán. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập