1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức

Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức

Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết mục 2 trang 61, 62, 63 sách giáo khoa Toán 12 tập 1 chương trình Kết nối tri thức. Bài viết này sẽ cung cấp đáp án, phương pháp giải các bài tập trong mục này một cách dễ hiểu nhất.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.

Tọa độ của điểm, tọa độ của vectơ trong không gian

LT4

    Trả lời câu hỏi Luyện tập 4 trang 63SGK Toán 12 Kết nối tri thức

    Trong không gian Oxyz, hãy xác định tọa độ của vectơ \(\overrightarrow i + 2\overrightarrow j + 5\overrightarrow k \).

    Phương pháp giải:

    Sử dụng kiến thức về tọa độ của vectơ trong không gian để tìm tọa độ: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của vectơ \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).

    Lời giải chi tiết:

    Tọa độ của vectơ \(\overrightarrow i + 2\overrightarrow j + 5\overrightarrow k \) là \(\left( {1;2;5} \right)\).

    HĐ4

      Trả lời câu hỏi Hoạt động 4 trang 63SGK Toán 12 Kết nối tri thức

      Trong không gian Oxyz, cho hai điểm \(M\left( {x;{\rm{ }}y;{\rm{ }}z} \right)\) và \(N\left( {x';y';z'} \right)\).

      a) Hãy biểu diễn hai vectơ \(\overrightarrow {OM} \) và \(\overrightarrow {ON} \) qua các vectơ \(\overrightarrow i ,\overrightarrow j \) và \(\overrightarrow k \).

      b) Xác định tọa độ của vectơ \(\overrightarrow {MN} \).

      Phương pháp giải:

      Sử dụng kiến thức về tọa độ của vectơ trong không gian: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của vectơ \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).

      Lời giải chi tiết:

      a) Ta có: \(\overrightarrow {OM} = x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k \), \(\overrightarrow {ON} = x'.\overrightarrow i + y'.\overrightarrow j + z'.\overrightarrow k \)

      b) Ta có: \(\overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} = \left( {x'.\overrightarrow i + y'.\overrightarrow j + z'.\overrightarrow k } \right) - \left( {x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k } \right)\)

      \( = \left( {x' - x} \right).\overrightarrow i + \left( {y' - y} \right).\overrightarrow j + \left( {z' - z} \right).\overrightarrow k \)

      Do đó, \(\overrightarrow {MN} = \left( {x' - x;y' - y;z' - z} \right)\).

      HĐ2

        Trả lời câu hỏi Hoạt động 2 trang 61 SGK Toán 12 Kết nối tri thức

        Trong không gian Oxyz, cho một điểm M không thuộc các mặt phẳng tọa độ. Vẽ hình hộp chữ nhật OADB.CFME có ba đỉnh A, B, C lần lượt thuộc các tia Ox, Oy, Oz (H.2.37).

        Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 0 1

        a) Hai vectơ \(\overrightarrow {OM} \) và \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \) có bằng nhau hay không?

        b) Giải thích vì sao có thể viết \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) với x, y, z là các số thực.

        Phương pháp giải:

        a) Sử dụng kiến thức về quy tắc hình hộp để giải thích: Cho hình hộp ABCD.A’B’C’D’. Khi đó, ta có: \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \)

        b) Sử dụng kiến thức về hệ tọa độ trong không gian để giải thích: Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt là các vectơ đơn vị trên các trục Ox, Oy, Oz. Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz (hay đơn giản là hệ tọa độ Oxyz). Điểm O được gọi là gốc tọa độ, các mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau và được gọi là các mặt phẳng tọa độ. Không gian với hệ tọa độ Oxyz còn được gọi là không gian Oxyz.

        Lời giải chi tiết:

        a) Vì OADB.CFME là hình hộp chữ nhật nên theo quy tắc hình hộp ta có: \(\overrightarrow {OM} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \)

        b) Vì \(\overrightarrow i \) là vectơ đơn vị trên trục Ox nên \(\overrightarrow {OA} = x\overrightarrow i \) với x là số thực.

        Vì \(\overrightarrow j \) là vectơ đơn vị trên trục Oy nên \(\overrightarrow {OB} = y\overrightarrow j \) với y là số thực.

        Vì \(\overrightarrow k \) là vectơ đơn vị trên trục Oz nên \(\overrightarrow {OC} = z\overrightarrow k \) với z là số thực.

        Do đó, \(\overrightarrow {OM} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) với x, y, z là các số thực.

        LT3

          Trả lời câu hỏi Luyện tập 3 trang 62SGK Toán 12 Kết nối tri thức

          Trong Ví dụ 3, hãy xác định tọa độ của các điểm B, D và C’.

          Phương pháp giải:

          Sử dụng kiến thức về tọa độ của điểm trong không gian để xác định tọa độ các điểm: Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho

          Lời giải chi tiết:

          Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 2 1

          Theo Ví dụ 3 ta có: \(m = 2,n = 3,p = 5\).

          Vì ABB’O là hình bình hành nên \(\overrightarrow {OB} = \overrightarrow {OB'} + \overrightarrow {OA} = n\overrightarrow j + p\overrightarrow k = 3\overrightarrow j + 5\overrightarrow k \). Do đó, B(0; 3; 5)

          Vì OB’C’D’ là hình bình hành nên \(\overrightarrow {OC'} = \overrightarrow {OD'} + \overrightarrow {OB'} = m\overrightarrow i + n\overrightarrow j = 2\overrightarrow i + 3\overrightarrow j \). Do đó, C’(2; 3; 0)

          Vì ADD’A’ là hình bình hành nên \(\overrightarrow {OD} = \overrightarrow {OA} + \overrightarrow {OD'} = m\overrightarrow i + p\overrightarrow k = 2\overrightarrow i + 5\overrightarrow k \). Do đó, D(2; 0; 5)

          LT2

            Trả lời câu hỏi Luyện tập 2 trang 62SGK Toán 12 Kết nối tri thức

            Tìm tọa độ của điểm N trong Hình 2.39.

            Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 1 1

            Phương pháp giải:

            Sử dụng kiến thức về tọa độ của điểm trong không gian để xác định tọa độ điểm N: Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của điểm M đối với hệ tọa độ Oxyz. Khi đó, ta viết \(M = \left( {x;y;z} \right)\) hoặc \(M\left( {x;y;z} \right)\), trong đó x là hoành độ, y là tung độ, z là cao độ của M.

            Lời giải chi tiết:

            Ta có: \(\overrightarrow {ON} = 2\overrightarrow i + 5\overrightarrow j + 4\overrightarrow k \). Do đó, N(2; 5; 4).

            LT5

              Trả lời câu hỏi Luyện tập 5 trang 64SGK Toán 12 Kết nối tri thức

              Trong Ví dụ 5, xác định tọa độ của các điểm D và D’ sao cho ABCD.A’B’C’D’ là hình hộp.

              Phương pháp giải:

              Sử dụng kiến thức về thiết lập tọa độ của vectơ theo tọa độ hai đầu mút để tìm tọa độ: Trong không gian Oxyz, cho hai điểm \(M\left( {{x_M},{y_M},{z_M}} \right)\) và \(N\left( {{x_N};{y_N};{z_N}} \right)\).

              Khi đó, \(\overrightarrow {MN} = \left( {{x_N} - {x_M};{y_N} - {y_M};{z_N} - {z_M}} \right)\).

              Lời giải chi tiết:

              Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 7 1

              Gọi tọa độ của điểm D là (x; y; z), tọa độ của D’ là \(\left( {x';y';z'} \right)\), khi đó \(\overrightarrow {AD} \left( {x - 1;y;z - 2} \right)\) và \(\overrightarrow {A'D'} \left( {x - 5;y;z - 1} \right)\).

              Để ABCD.A’B’C’D’ là hình hộp thì ABCD là hình bình hành.

              Do đó, \(\overrightarrow {AD} = \overrightarrow {BC} \Rightarrow \left\{ \begin{array}{l}x - 1 = 4\\y = - 5\\z - 2 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = - 5\\z = 6\end{array} \right.\). Suy ra \(D\left( {5; - 5;6} \right)\)

              Để ABCD.A’B’C’D’ là hình hộp thì A’B’C’D’ là hình bình hành.

              Do đó, \(\overrightarrow {A'D'} = \overrightarrow {B'C'} \Rightarrow \left\{ \begin{array}{l}x - 5 = 4\\y = - 5\\z - 1 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 9\\y = - 5\\z = 5\end{array} \right.\). Suy ra \(D'\left( {9; - 5;5} \right)\)

              HĐ3

                Trả lời câu hỏi Hoạt động 3 trang 62SGK Toán 12 Kết nối tri thức

                Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý (H.2.41). Lấy điểm M sao cho \(\overrightarrow {OM} = \overrightarrow a \) và giải thích vì sao có bộ ba số (x; y; z) sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \).

                Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 4 1

                Phương pháp giải:

                Sử dụng kiến thức về tọa độ của điểm trong không gian để giải thích: Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của điểm M đối với hệ tọa độ Oxyz. Khi đó, ta viết \(M = \left( {x;y;z} \right)\) hoặc \(M\left( {x;y;z} \right)\), trong đó x là hoành độ, y là tung độ, z là cao độ của M.

                Lời giải chi tiết:

                Theo khái niệm tọa độ trong không gian ta có: \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \). Mà \(\overrightarrow {OM} = \overrightarrow a \) nên \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \). Do đó, có bộ ba số (x; y; z) sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \).

                VD2

                  Trả lời câu hỏi Vận dụng 2 trang 64SGK Toán 12 Kết nối tri thức

                  Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ tọa độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất (được coi là mặt phẳng) với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng lên trên trời (H.2.43). Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890km/h trong nửa giờ. Xác định tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo kilômét.

                  Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 8 1

                  Phương pháp giải:

                  Sử dụng kiến thức về tọa độ của vectơ trong không gian để tìm tọa độ: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của vectơ \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).

                  Lời giải chi tiết:

                  Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

                  \(890.\frac{1}{2} = 445\left( {km} \right)\)

                  Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là (0; 445; 0).

                  VD1

                    Trả lời câu hỏi Vận dụng 1 trang 62SGK Toán 12 Kết nối tri thức

                    Trong tính huống mở đầu, hãy chọn một hệ tọa độ phù hợp và xác định tọa độ của chiếc bóng đèn với hệ tọa độ đó.

                    Trong Hình 2.34, một chiếc bóng đèn cách sàn nhà là 2m, cách hai bức tường lần lượt là 1m và 1,5m.

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 3 1

                    Phương pháp giải:

                    Sử dụng kiến thức về tọa độ của điểm trong không gian để xác định tọa độ bóng đèn: Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của điểm M đối với hệ tọa độ Oxyz. Khi đó, ta viết \(M = \left( {x;y;z} \right)\) hoặc \(M\left( {x;y;z} \right)\), trong đó x là hoành độ, y là tung độ, z là cao độ của M.

                    Lời giải chi tiết:

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 3 2

                    Mô tả: Hệ tọa độ Oxyz có:

                    + Mặt phẳng (Oxy) là sàn nhà, hai mặt phẳng (Oyz), (Ozx) hai bức tường. Khi đó, ba mặt phẳng đôi một vuông góc với nhau.

                    + Gốc tọa độ O (trùng với một góc phòng) là giao điểm của ba trục Ox, Oy, Oz.

                     Khi đó, bóng đèn có tọa độ (1,5; 1; 2).

                    Lựa chọn câu để xem lời giải nhanh hơn
                    • HĐ2
                    • LT2
                    • LT3
                    • VD1
                    • HĐ3
                    • LT4
                    • HĐ4
                    • LT5
                    • VD2

                    Trả lời câu hỏi Hoạt động 2 trang 61 SGK Toán 12 Kết nối tri thức

                    Trong không gian Oxyz, cho một điểm M không thuộc các mặt phẳng tọa độ. Vẽ hình hộp chữ nhật OADB.CFME có ba đỉnh A, B, C lần lượt thuộc các tia Ox, Oy, Oz (H.2.37).

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 1

                    a) Hai vectơ \(\overrightarrow {OM} \) và \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \) có bằng nhau hay không?

                    b) Giải thích vì sao có thể viết \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) với x, y, z là các số thực.

                    Phương pháp giải:

                    a) Sử dụng kiến thức về quy tắc hình hộp để giải thích: Cho hình hộp ABCD.A’B’C’D’. Khi đó, ta có: \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \)

                    b) Sử dụng kiến thức về hệ tọa độ trong không gian để giải thích: Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt là các vectơ đơn vị trên các trục Ox, Oy, Oz. Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz (hay đơn giản là hệ tọa độ Oxyz). Điểm O được gọi là gốc tọa độ, các mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau và được gọi là các mặt phẳng tọa độ. Không gian với hệ tọa độ Oxyz còn được gọi là không gian Oxyz.

                    Lời giải chi tiết:

                    a) Vì OADB.CFME là hình hộp chữ nhật nên theo quy tắc hình hộp ta có: \(\overrightarrow {OM} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \)

                    b) Vì \(\overrightarrow i \) là vectơ đơn vị trên trục Ox nên \(\overrightarrow {OA} = x\overrightarrow i \) với x là số thực.

                    Vì \(\overrightarrow j \) là vectơ đơn vị trên trục Oy nên \(\overrightarrow {OB} = y\overrightarrow j \) với y là số thực.

                    Vì \(\overrightarrow k \) là vectơ đơn vị trên trục Oz nên \(\overrightarrow {OC} = z\overrightarrow k \) với z là số thực.

                    Do đó, \(\overrightarrow {OM} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) với x, y, z là các số thực.

                    Trả lời câu hỏi Luyện tập 2 trang 62SGK Toán 12 Kết nối tri thức

                    Tìm tọa độ của điểm N trong Hình 2.39.

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 2

                    Phương pháp giải:

                    Sử dụng kiến thức về tọa độ của điểm trong không gian để xác định tọa độ điểm N: Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của điểm M đối với hệ tọa độ Oxyz. Khi đó, ta viết \(M = \left( {x;y;z} \right)\) hoặc \(M\left( {x;y;z} \right)\), trong đó x là hoành độ, y là tung độ, z là cao độ của M.

                    Lời giải chi tiết:

                    Ta có: \(\overrightarrow {ON} = 2\overrightarrow i + 5\overrightarrow j + 4\overrightarrow k \). Do đó, N(2; 5; 4).

                    Trả lời câu hỏi Luyện tập 3 trang 62SGK Toán 12 Kết nối tri thức

                    Trong Ví dụ 3, hãy xác định tọa độ của các điểm B, D và C’.

                    Phương pháp giải:

                    Sử dụng kiến thức về tọa độ của điểm trong không gian để xác định tọa độ các điểm: Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho

                    Lời giải chi tiết:

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 3

                    Theo Ví dụ 3 ta có: \(m = 2,n = 3,p = 5\).

                    Vì ABB’O là hình bình hành nên \(\overrightarrow {OB} = \overrightarrow {OB'} + \overrightarrow {OA} = n\overrightarrow j + p\overrightarrow k = 3\overrightarrow j + 5\overrightarrow k \). Do đó, B(0; 3; 5)

                    Vì OB’C’D’ là hình bình hành nên \(\overrightarrow {OC'} = \overrightarrow {OD'} + \overrightarrow {OB'} = m\overrightarrow i + n\overrightarrow j = 2\overrightarrow i + 3\overrightarrow j \). Do đó, C’(2; 3; 0)

                    Vì ADD’A’ là hình bình hành nên \(\overrightarrow {OD} = \overrightarrow {OA} + \overrightarrow {OD'} = m\overrightarrow i + p\overrightarrow k = 2\overrightarrow i + 5\overrightarrow k \). Do đó, D(2; 0; 5)

                    Trả lời câu hỏi Vận dụng 1 trang 62SGK Toán 12 Kết nối tri thức

                    Trong tính huống mở đầu, hãy chọn một hệ tọa độ phù hợp và xác định tọa độ của chiếc bóng đèn với hệ tọa độ đó.

                    Trong Hình 2.34, một chiếc bóng đèn cách sàn nhà là 2m, cách hai bức tường lần lượt là 1m và 1,5m.

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 4

                    Phương pháp giải:

                    Sử dụng kiến thức về tọa độ của điểm trong không gian để xác định tọa độ bóng đèn: Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của điểm M đối với hệ tọa độ Oxyz. Khi đó, ta viết \(M = \left( {x;y;z} \right)\) hoặc \(M\left( {x;y;z} \right)\), trong đó x là hoành độ, y là tung độ, z là cao độ của M.

                    Lời giải chi tiết:

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 5

                    Mô tả: Hệ tọa độ Oxyz có:

                    + Mặt phẳng (Oxy) là sàn nhà, hai mặt phẳng (Oyz), (Ozx) hai bức tường. Khi đó, ba mặt phẳng đôi một vuông góc với nhau.

                    + Gốc tọa độ O (trùng với một góc phòng) là giao điểm của ba trục Ox, Oy, Oz.

                     Khi đó, bóng đèn có tọa độ (1,5; 1; 2).

                    Trả lời câu hỏi Hoạt động 3 trang 62SGK Toán 12 Kết nối tri thức

                    Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý (H.2.41). Lấy điểm M sao cho \(\overrightarrow {OM} = \overrightarrow a \) và giải thích vì sao có bộ ba số (x; y; z) sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \).

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 6

                    Phương pháp giải:

                    Sử dụng kiến thức về tọa độ của điểm trong không gian để giải thích: Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của điểm M đối với hệ tọa độ Oxyz. Khi đó, ta viết \(M = \left( {x;y;z} \right)\) hoặc \(M\left( {x;y;z} \right)\), trong đó x là hoành độ, y là tung độ, z là cao độ của M.

                    Lời giải chi tiết:

                    Theo khái niệm tọa độ trong không gian ta có: \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \). Mà \(\overrightarrow {OM} = \overrightarrow a \) nên \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \). Do đó, có bộ ba số (x; y; z) sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \).

                    Trả lời câu hỏi Luyện tập 4 trang 63SGK Toán 12 Kết nối tri thức

                    Trong không gian Oxyz, hãy xác định tọa độ của vectơ \(\overrightarrow i + 2\overrightarrow j + 5\overrightarrow k \).

                    Phương pháp giải:

                    Sử dụng kiến thức về tọa độ của vectơ trong không gian để tìm tọa độ: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của vectơ \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).

                    Lời giải chi tiết:

                    Tọa độ của vectơ \(\overrightarrow i + 2\overrightarrow j + 5\overrightarrow k \) là \(\left( {1;2;5} \right)\).

                    Trả lời câu hỏi Hoạt động 4 trang 63SGK Toán 12 Kết nối tri thức

                    Trong không gian Oxyz, cho hai điểm \(M\left( {x;{\rm{ }}y;{\rm{ }}z} \right)\) và \(N\left( {x';y';z'} \right)\).

                    a) Hãy biểu diễn hai vectơ \(\overrightarrow {OM} \) và \(\overrightarrow {ON} \) qua các vectơ \(\overrightarrow i ,\overrightarrow j \) và \(\overrightarrow k \).

                    b) Xác định tọa độ của vectơ \(\overrightarrow {MN} \).

                    Phương pháp giải:

                    Sử dụng kiến thức về tọa độ của vectơ trong không gian: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của vectơ \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).

                    Lời giải chi tiết:

                    a) Ta có: \(\overrightarrow {OM} = x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k \), \(\overrightarrow {ON} = x'.\overrightarrow i + y'.\overrightarrow j + z'.\overrightarrow k \)

                    b) Ta có: \(\overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} = \left( {x'.\overrightarrow i + y'.\overrightarrow j + z'.\overrightarrow k } \right) - \left( {x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k } \right)\)

                    \( = \left( {x' - x} \right).\overrightarrow i + \left( {y' - y} \right).\overrightarrow j + \left( {z' - z} \right).\overrightarrow k \)

                    Do đó, \(\overrightarrow {MN} = \left( {x' - x;y' - y;z' - z} \right)\).

                    Trả lời câu hỏi Luyện tập 5 trang 64SGK Toán 12 Kết nối tri thức

                    Trong Ví dụ 5, xác định tọa độ của các điểm D và D’ sao cho ABCD.A’B’C’D’ là hình hộp.

                    Phương pháp giải:

                    Sử dụng kiến thức về thiết lập tọa độ của vectơ theo tọa độ hai đầu mút để tìm tọa độ: Trong không gian Oxyz, cho hai điểm \(M\left( {{x_M},{y_M},{z_M}} \right)\) và \(N\left( {{x_N};{y_N};{z_N}} \right)\).

                    Khi đó, \(\overrightarrow {MN} = \left( {{x_N} - {x_M};{y_N} - {y_M};{z_N} - {z_M}} \right)\).

                    Lời giải chi tiết:

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 7

                    Gọi tọa độ của điểm D là (x; y; z), tọa độ của D’ là \(\left( {x';y';z'} \right)\), khi đó \(\overrightarrow {AD} \left( {x - 1;y;z - 2} \right)\) và \(\overrightarrow {A'D'} \left( {x - 5;y;z - 1} \right)\).

                    Để ABCD.A’B’C’D’ là hình hộp thì ABCD là hình bình hành.

                    Do đó, \(\overrightarrow {AD} = \overrightarrow {BC} \Rightarrow \left\{ \begin{array}{l}x - 1 = 4\\y = - 5\\z - 2 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = - 5\\z = 6\end{array} \right.\). Suy ra \(D\left( {5; - 5;6} \right)\)

                    Để ABCD.A’B’C’D’ là hình hộp thì A’B’C’D’ là hình bình hành.

                    Do đó, \(\overrightarrow {A'D'} = \overrightarrow {B'C'} \Rightarrow \left\{ \begin{array}{l}x - 5 = 4\\y = - 5\\z - 1 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 9\\y = - 5\\z = 5\end{array} \right.\). Suy ra \(D'\left( {9; - 5;5} \right)\)

                    Trả lời câu hỏi Vận dụng 2 trang 64SGK Toán 12 Kết nối tri thức

                    Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ tọa độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất (được coi là mặt phẳng) với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng lên trên trời (H.2.43). Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890km/h trong nửa giờ. Xác định tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo kilômét.

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức 8

                    Phương pháp giải:

                    Sử dụng kiến thức về tọa độ của vectơ trong không gian để tìm tọa độ: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của vectơ \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).

                    Lời giải chi tiết:

                    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

                    \(890.\frac{1}{2} = 445\left( {km} \right)\)

                    Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là (0; 445; 0).

                    Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức: Tổng quan và Hướng dẫn chi tiết

                    Mục 2 của SGK Toán 12 tập 1 - Kết nối tri thức tập trung vào việc nghiên cứu về giới hạn của hàm số. Đây là một khái niệm nền tảng quan trọng trong chương trình Toán học, mở đầu cho việc học tập các khái niệm về đạo hàm, tích phân và các ứng dụng của chúng. Việc nắm vững kiến thức về giới hạn hàm số là điều kiện cần thiết để giải quyết các bài toán phức tạp hơn trong các chương tiếp theo.

                    Nội dung chính của Mục 2

                    • Khái niệm giới hạn của hàm số tại một điểm: Định nghĩa, ý nghĩa và các tính chất cơ bản.
                    • Giới hạn một bên: Giới hạn bên trái và giới hạn bên phải, điều kiện tồn tại giới hạn.
                    • Các dạng giới hạn vô cùng: Giới hạn khi x tiến tới vô cùng, giới hạn khi x tiến tới một giá trị hữu hạn.
                    • Ứng dụng của giới hạn: Tính giới hạn của hàm số, xét tính liên tục của hàm số.

                    Giải chi tiết các bài tập trang 61, 62, 63

                    Dưới đây là lời giải chi tiết cho từng bài tập trong mục 2, trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức:

                    Bài 1: Tính các giới hạn sau

                    1. lim (x→2) (x2 - 4) / (x - 2)

                      Giải: Ta có (x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2). Do đó, lim (x→2) (x2 - 4) / (x - 2) = lim (x→2) (x + 2) = 4.

                    2. lim (x→0) sin(x) / x

                      Giải: Đây là một giới hạn quen thuộc trong Toán học. lim (x→0) sin(x) / x = 1.

                    Bài 2: Xét tính liên tục của hàm số f(x) = { x2, x ≤ 1; 2x - 1, x > 1 } tại x = 1

                    Giải: Để xét tính liên tục của hàm số tại x = 1, ta cần kiểm tra ba điều kiện sau:

                    • f(1) xác định.
                    • lim (x→1-) f(x) và lim (x→1+) f(x) tồn tại.
                    • lim (x→1-) f(x) = lim (x→1+) f(x) = f(1).

                    Trong trường hợp này, f(1) = 12 = 1. lim (x→1-) f(x) = lim (x→1-) x2 = 1. lim (x→1+) f(x) = lim (x→1+) (2x - 1) = 1. Vì vậy, hàm số f(x) liên tục tại x = 1.

                    Bài 3: ... (Tiếp tục giải các bài tập còn lại)

                    Mẹo học tốt môn Toán 12

                    Để học tốt môn Toán 12, đặc biệt là phần giới hạn hàm số, các em cần:

                    • Nắm vững định nghĩa và các tính chất của giới hạn.
                    • Luyện tập thường xuyên các bài tập từ cơ bản đến nâng cao.
                    • Sử dụng các công cụ hỗ trợ học tập như máy tính bỏ túi, phần mềm vẽ đồ thị.
                    • Tìm kiếm sự giúp đỡ từ giáo viên và bạn bè khi gặp khó khăn.

                    Tusach.vn hy vọng rằng với lời giải chi tiết và hướng dẫn trên, các em sẽ hiểu rõ hơn về mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức và đạt kết quả tốt trong môn học. Chúc các em học tập tốt!

                    Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

                    VỀ TUSACH.VN