Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2.5 trang 58 SGK Toán 12 tập 1 chương trình Kết nối tri thức. Bài tập này thuộc chủ đề về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tusach.vn cung cấp lời giải bài tập Toán 12 chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.
Cho hình lăng trụ tam giác ABC.A’B’C’ có \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b \) và \(\overrightarrow {AC} = \overrightarrow c \). Hãy biểu diễn các vectơ sau qua các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \): a) \(\overrightarrow {AB'} \); b) \(\overrightarrow {B'C} \); c) \(\overrightarrow {BC'} \).
Đề bài
Cho hình lăng trụ tam giác ABC.A’B’C’ có \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b \) và \(\overrightarrow {AC} = \overrightarrow c \). Hãy biểu diễn các vectơ sau qua các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \):a) \(\overrightarrow {AB'} \);b) \(\overrightarrow {B'C} \);c) \(\overrightarrow {BC'} \).
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc hình bình hành để biểu diễn vectơ: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Lời giải chi tiết

a) Vì A’ABB’ là hình bình hành nên \(\overrightarrow {AB'} = \overrightarrow {AA'} + \overrightarrow {AB} = \overrightarrow a + \overrightarrow b \)
b) Vì A’ABB’ là hình bình hành nên \(\overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow a \)
Ta có: \(\overrightarrow {BC} = \overrightarrow {BA} + \overrightarrow {AC} = - \overrightarrow b + \overrightarrow c \)
Vì C’CBB’ là hình bình hành nên
+ \(\overrightarrow {B'C'} = \overrightarrow {BC} = - \overrightarrow b + \overrightarrow c \)
+ \(\overrightarrow {B'C} = \overrightarrow {B'C'} + \overrightarrow {B'B} = - \overrightarrow b + \overrightarrow c - \overrightarrow a \)
c) Vì C’CBB’ là hình bình hành nên \(\overrightarrow {BC'} = \overrightarrow {BC} + \overrightarrow {BB'} = - \overrightarrow b + \overrightarrow c + \overrightarrow a \)
Bài tập 2.5 trang 58 SGK Toán 12 tập 1 Kết nối tri thức yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số.
Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy khảo sát hàm số và tìm các điểm cực trị.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
Bài tập này là một ví dụ điển hình về việc ứng dụng đạo hàm để khảo sát hàm số. Việc nắm vững các bước giải bài tập này sẽ giúp các em tự tin giải quyết các bài tập tương tự trong SGK và các đề thi.
Ngoài ra, các em có thể tìm hiểu thêm về các ứng dụng khác của đạo hàm như tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, giải phương trình, bất phương trình...
Để củng cố kiến thức, các em có thể tự giải các bài tập sau:
Tusach.vn hy vọng với lời giải chi tiết này, các em sẽ hiểu rõ hơn về cách giải bài tập 2.5 trang 58 SGK Toán 12 tập 1 Kết nối tri thức. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập