Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 5.13 trang 48 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {1; - 2;4} \right)\).
Đề bài
Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {1; - 2;4} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về lập phương trình đường thẳng đi qua hai điểm để viết phương trình: Trong không gian Oxyz, cho hai điểm phân biệt \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\). Đường thẳng \({A_1}{A_2}\) có vectơ chỉ phương là \(\overrightarrow {{A_1}{A_2}} \left( {{x_2} - {x_1};{y_2} - {y_1};{z_2} - {z_1}} \right)\).
Đường thẳng \({A_1}{A_2}\) có phương trình đường thẳng tham số là: \(\left\{ \begin{array}{l}x = {x_1} + \left( {{x_2} - {x_1}} \right)t\\y = {y_1} + \left( {{y_2} - {y_1}} \right)t\\z = {z_1} + \left( {{z_2} - {z_1}} \right)t\end{array} \right.\left( {t \in \mathbb{R}} \right)\)
Sử dụng kiến thức về phương trình chính tắc của đường thẳng để tìm vectơ chỉ phương và điểm thuộc đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) với a, b, c là các số khác 0. Hệ phương trình \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \).
Lời giải chi tiết
Đường thẳng AB đi qua điểm \(A\left( {2;3; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow {AB} \left( { - 1; - 5;5} \right)\). Do đó:
Phương trình tham số của đường thẳng AB là: \(\left\{ \begin{array}{l}x = 2 - t\\y = 3 - 5t\\z = - 1 + 5t\end{array} \right.\).
Phương trình chính tắc của đường thẳng AB là: \(\frac{{x - 2}}{{ - 1}} = \frac{{y - 3}}{{ - 5}} = \frac{{z + 1}}{5}\).
Bài tập 5.13 trang 48 SGK Toán 12 tập 2 Kết nối tri thức thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tối ưu hóa.
(Đề bài cụ thể của bài tập 5.13 sẽ được chèn vào đây. Ví dụ: Một người nông dân muốn rào một mảnh đất hình chữ nhật có diện tích 100m2. Hỏi người đó cần dùng bao nhiêu mét lưới để rào mảnh đất đó, biết rằng chi phí làm hàng rào là 50.000 đồng/mét?)
Để giải các bài toán tối ưu hóa, chúng ta thường thực hiện theo các bước sau:
(Lời giải chi tiết của bài tập 5.13 sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng và kết quả cuối cùng. Ví dụ: Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật là x và y. Ta có xy = 100. Chu vi của mảnh đất là P = 2(x+y). Biểu diễn y = 100/x. P = 2(x + 100/x). Đạo hàm P' = 2(1 - 100/x2). Giải P' = 0 ta được x = 10. Khi x = 10 thì y = 10. Vậy mảnh đất là hình vuông có cạnh 10m. Chu vi P = 40m. Chi phí làm hàng rào là 40 * 50.000 = 2.000.000 đồng.)
Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự sau:
Khi giải các bài tập tối ưu hóa, bạn cần lưu ý:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài tập 5.13 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập