Chào mừng các em học sinh đến với lời giải chi tiết bài tập 4.4 trang 11 SGK Toán 12 tập 2 Kết nối tri thức. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tusach.vn cung cấp lời giải chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm: a) (int {left( {2cos x - frac{3}{{{{sin }^2}x}}} right)} dx); b) (int {4{{sin }^2}frac{x}{2}} dx); c) (int {{{left( {sin frac{x}{2} - cos frac{x}{2}} right)}^2}} dx); d) (int {left( {x + {{tan }^2}x} right)} dx).
Đề bài
Tìm:
a) \(\int {\left( {2\cos x - \frac{3}{{{{\sin }^2}x}}} \right)} dx\);
b) \(\int {4{{\sin }^2}\frac{x}{2}} dx\);
c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}} dx\);
d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)
Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \), \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \)
Sử dụng kiến thức về nguyên hàm của hàm số lượng giác để tính:
\(\int {\cos x} dx = \sin x + C,\int {\sin x} dx = - \cos x + C,\int {\frac{1}{{{{\cos }^2}x}}} dx = \tan x + C,\int {\frac{1}{{{{\sin }^2}x}}} dx = - \cot x + C\)
Lời giải chi tiết
a) \(\int {\left( {2\cos x - \frac{3}{{{{\sin }^2}x}}} \right)} dx = 2\int {\cos x} dx - 3\int {\frac{1}{{{{\sin }^2}x}}} dx = 2\sin x + 3\cot x + C\)
b) Từ công thức nhân đôi \(\cos 2x = 1 - 2{\sin ^2}x\), áp dụng vào bài ta có:
\(\cos x = 1 - 2{\sin ^2}\frac{x}{2} \Leftrightarrow 2{\sin ^2}\frac{x}{2} = 1 - \cos x \Leftrightarrow 4{\sin ^2}\frac{x}{2} = 2(1 - \cos x)\)
Từ đó suy ra:
\(\int {4{{\sin }^2}\frac{x}{2}} dx = \int {2\left( {1 - \cos x} \right)} dx = 2\int {dx - 2\int {\cos x} dx = 2x - 2\sin x + C} \)
c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}} dx = \int {\left( {{{\sin }^2}\frac{x}{2} + {{\cos }^2}\frac{x}{2} - 2\sin \frac{x}{2}.\cos \frac{x}{2}} \right)} dx = \int {\left( {1 - \sin x} \right)} dx\)
\( = \int {dx} - \int {\sin x} dx = x + \cos x + C\)
d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx = \int {xdx} + \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} = \frac{{{x^2}}}{2} + \tan x - x + C\)
Bài tập 4.4 trang 11 SGK Toán 12 tập 2 Kết nối tri thức yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.
(Đề bài cụ thể của bài tập 4.4 sẽ được chèn vào đây. Ví dụ: Khảo sát hàm số y = x3 - 3x2 + 2)
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| Hàm số | Đồng biến | Nghịch biến | Đồng biến |
Khi giải các bài tập về khảo sát hàm số, cần chú ý các bước sau:
Để luyện tập thêm, các em có thể tham khảo các bài tập tương tự sau:
Tusach.vn hy vọng với lời giải chi tiết này, các em sẽ hiểu rõ hơn về cách giải bài tập 4.4 trang 11 SGK Toán 12 tập 2 Kết nối tri thức. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập