1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 2.17 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.17 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức

Giải Bài Tập 2.17 Trang 65 Toán 12 Tập 1 - Kết Nối Tri Thức

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 2.17 trang 65 một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có đỉnh A trùng với gốc O và các đỉnh D, B, A’ có tọa độ lần lượt là (2; 0; 0), (0; 4; 0), (0; 0; 3) (H.2.45). Xác định tọa độ của các đỉnh còn lại của hình hộp chữ nhật.

Đề bài

Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có đỉnh A trùng với gốc O và các đỉnh D, B, A’ có tọa độ lần lượt là (2; 0; 0), (0; 4; 0), (0; 0; 3) (H.2.45). Xác định tọa độ của các đỉnh còn lại của hình hộp chữ nhật.

Giải bài tập 2.17 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài tập 2.17 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức 2

Sử dụng kiến thức về tọa độ của điểm trong không gian để xác định tọa độ các điểm: Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của điểm M đối với hệ tọa độ Oxyz. Khi đó, ta viết \(M = \left( {x;y;z} \right)\) hoặc \(M\left( {x;y;z} \right)\), trong đó x là hoành độ, y là tung độ, z là cao độ của M.

Lời giải chi tiết

Vì A trùng gốc O nên A(0; 0; 0).

Vì D thuộc tia Ox nên hai vectơ \(\overrightarrow {OD} \) và \(\overrightarrow i \) cùng hướng. Do đó, tồn tại số thực m sao cho \(\overrightarrow {OD} = m\overrightarrow i \). Mà D(2; 0; 0) nên \(m = 2\).

Vì B thuộc tia Oy nên hai vectơ \(\overrightarrow {OB} \) và \(\overrightarrow j \) cùng hướng. Do đó, tồn tại số thực n sao cho \(\overrightarrow {OB} = n\overrightarrow j \). Mà B(0; 4; 0) nên \(n = 4\)

Vì A’ thuộc tia Oz nên hai vectơ \(\overrightarrow {OA'} \) và \(\overrightarrow k \) cùng hướng. Do đó, tồn tại số thực p sao cho \(\overrightarrow {OA'} = p\overrightarrow k \). Mà A’(0; 0; 3) nên \(p = 3\).

Vì ODCB là hình bình hành nên \(\overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OB} = m\overrightarrow i + n\overrightarrow j = 2\overrightarrow i + 4\overrightarrow j \). Do đó, C(2; 4; 0).

Vì OA’B’B là hình bình hành nên \(\overrightarrow {OB'} = \overrightarrow {OA'} + \overrightarrow {OB} = p\overrightarrow k + n\overrightarrow j = 3\overrightarrow k + 4\overrightarrow j \). Do đó, B’(0; 4; 3).

Vì OA’D’D là hình bình hành nên \(\overrightarrow {OD'} = \overrightarrow {OA'} + \overrightarrow {OD} = m\overrightarrow i + p\overrightarrow k = 2\overrightarrow i + 3\overrightarrow k \). Do đó, D’(2; 0; 3).

Vì ABCD. A’B’C’D’ là hình hộp chữ nhật nên theo quy tắc hình hộp ta có:

\(\overrightarrow {OC'} = \overrightarrow {OD} + \overrightarrow {OB} + \overrightarrow {OA'} = m\overrightarrow i + n\overrightarrow j + p\overrightarrow k = 2\overrightarrow i + 4\overrightarrow j + 3\overrightarrow k \). Do đó, C’(2; 4; 3).

Giải Bài Tập 2.17 Trang 65 Toán 12 Tập 1 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 2.17 trang 65 SGK Toán 12 tập 1 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và các lưu ý quan trọng để bạn có thể hiểu rõ và áp dụng vào các bài tập tương tự.

Nội dung bài tập 2.17 trang 65 Toán 12 Tập 1 - Kết Nối Tri Thức

Bài tập 2.17 thường có dạng như sau: (Ví dụ, bài tập có thể yêu cầu tính đạo hàm của một hàm số tại một điểm, hoặc tìm điều kiện để hàm số có đạo hàm tại một điểm, hoặc ứng dụng đạo hàm để giải quyết một bài toán tối ưu hóa).

Lời giải chi tiết bài tập 2.17 trang 65 Toán 12 Tập 1 - Kết Nối Tri Thức

Để giải bài tập này, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số: Xác định rõ hàm số cần tìm đạo hàm.
  2. Áp dụng công thức đạo hàm: Sử dụng các công thức đạo hàm cơ bản và các quy tắc đạo hàm (quy tắc cộng, trừ, nhân, chia, đạo hàm hợp) để tính đạo hàm của hàm số.
  3. Tính toán và rút gọn: Thực hiện các phép tính và rút gọn biểu thức đạo hàm.
  4. Kiểm tra kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa:

Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.

Giải:

f'(x) = 2x + 2

f'(1) = 2(1) + 2 = 4

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Các lưu ý quan trọng khi giải bài tập về đạo hàm

  • Nắm vững các công thức đạo hàm cơ bản: Đây là nền tảng để giải quyết mọi bài toán về đạo hàm.
  • Hiểu rõ các quy tắc đạo hàm: Áp dụng đúng quy tắc đạo hàm để tránh sai sót.
  • Rèn luyện kỹ năng tính toán: Thực hành giải nhiều bài tập để nâng cao kỹ năng tính toán và rút gọn biểu thức.
  • Kiểm tra lại kết quả: Luôn kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự và tài liệu tham khảo

Để củng cố kiến thức và rèn luyện kỹ năng, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 12 tập 1 Kết nối tri thức và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tìm kiếm các video hướng dẫn giải bài tập trên YouTube hoặc các trang web học trực tuyến.

Tusach.vn hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải quyết thành công bài tập 2.17 trang 65 SGK Toán 12 tập 1 Kết nối tri thức. Chúc bạn học tập tốt!

Bảng tổng hợp công thức đạo hàm cơ bản

Hàm sốĐạo hàm
f(x) = c (hằng số)f'(x) = 0
f(x) = xnf'(x) = nxn-1
f(x) = sin xf'(x) = cos x
f(x) = cos xf'(x) = -sin x

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN