Chào mừng các em học sinh đến với lời giải chi tiết bài tập 5.7 trang 39 SGK Toán 12 tập 2 Kết nối tri thức. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn sẽ cung cấp lời giải bài tập một cách dễ hiểu, chi tiết, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + 3y - z = 0,\left( Q \right):x - y - 2z + 1 = 0\). a) Chứng minh rằng hai mặt phẳng (P) và (Q) vuông góc với nhau. b) Tìm điểm M thuộc trục Ox và cách đều hai mặt phẳng (P) và (Q).
Đề bài
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + 3y - z = 0,\left( Q \right):x - y - 2z + 1 = 0\).
a) Chứng minh rằng hai mặt phẳng (P) và (Q) vuông góc với nhau.
b) Tìm điểm M thuộc trục Ox và cách đều hai mặt phẳng (P) và (Q).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về điều kiện để hai mặt phẳng vuông góc để chứng minh: Trong không gian Oxyz, cho hai mặt phẳng \(\left( \alpha \right):Ax + By + Cz + D = 0\), \(\left( \beta \right):A'x + B'y + C'z + D' = 0\) với hai vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\) tương ứng. Khi đó, \(\left( \alpha \right) \bot \left( \beta \right) \Leftrightarrow \overrightarrow n \bot \overrightarrow {n'} \Leftrightarrow AA' + BB' + CC' = 0\).
Sử dụng kiến thức về khoảng cách từ một điểm đến một mặt phẳng để tính: Trong không gian Oxyz, khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + Cz + D = 0\) là \(d\left( {M,\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
Lời giải chi tiết
a) Mặt phẳng (P) có một vectơ pháp tuyến là: \(\overrightarrow {{n_P}} = \left( {1;3; - 1} \right)\), mặt phẳng (Q) có một vectơ pháp tuyến là: \(\overrightarrow {{n_Q}} = \left( {1; - 1; - 2} \right)\).
Ta có: \(\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} = 1.1 + \left( { - 1} \right).3 + \left( { - 1} \right).\left( { - 2} \right) = 0\) nên \(\overrightarrow {{n_P}} \bot \overrightarrow {{n_Q}} \). Do đó, hai mặt phẳng (P) và (Q) vuông góc với nhau.
b) Điểm M thuộc trục Ox nên \(M\left( {x;0;0} \right)\).
Vì M cách đều hai mặt phẳng (P) và (Q) nên \(d\left( {M,\left( P \right)} \right) = d\left( {M,\left( Q \right)} \right)\)
\( \Rightarrow \frac{{\left| x \right|}}{{\sqrt {{1^2} + {3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {x + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }}\)
\( \Rightarrow \frac{{\left| x \right|}}{{\sqrt {11} }} = \frac{{\left| {x + 1} \right|}}{{\sqrt 6 }} \Rightarrow 6{x^2} = 11{\left( {x + 1} \right)^2} \Rightarrow 5{x^2} + 22x + 11 = 0 \Rightarrow \left[ \begin{array}{l}x = \frac{{ - 11 - \sqrt {66} }}{5}\\x = \frac{{ - 11 + \sqrt {66} }}{5}\end{array} \right.\)
Vậy \(M\left( {\frac{{ - 11 + \sqrt {66} }}{5};0;0} \right);M\left( {\frac{{ - 11 - \sqrt {66} }}{5};0;0} \right)\) thì thỏa mãn yêu cầu bài toán.
Bài tập 5.7 trang 39 SGK Toán 12 tập 2 Kết nối tri thức yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.
(Đề bài sẽ được chèn vào đây - ví dụ: Cho hàm số y = x3 - 3x2 + 2. Khảo sát hàm số và tìm các điểm cực trị.)
Khi giải các bài tập về khảo sát hàm số, các em cần chú ý:
Để luyện tập thêm, các em có thể tham khảo các bài tập tương tự sau:
Bài tập 5.7 trang 39 SGK Toán 12 tập 2 Kết nối tri thức là một bài tập quan trọng giúp các em hiểu rõ hơn về cách khảo sát hàm số và tìm các điểm cực trị. Hy vọng với lời giải chi tiết và dễ hiểu này, các em sẽ tự tin hơn trong việc giải các bài tập tương tự.
Mọi thắc mắc hoặc cần hỗ trợ thêm, đừng ngần ngại liên hệ với tusach.vn. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập