1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

Giải Bài Tập 4.2 Trang 11 Toán 12 Tập 2 - Kết Nối Tri Thức

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 4.2 trang 11 một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tìm nguyên hàm của các hàm số sau: a) \(f\left( x \right) = 3{x^2} + 2x - 1\); b) \(f\left( x \right) = {x^3} - x\); c) \(f\left( x \right) = {\left( {2x + 1} \right)^2}\); d) \(f\left( x \right) = {\left( {2x - \frac{1}{x}} \right)^2}\).

Đề bài

Tìm nguyên hàm của các hàm số sau:

a) \(f\left( x \right) = 3{x^2} + 2x - 1\);

b) \(f\left( x \right) = {x^3} - x\);

c) \(f\left( x \right) = {\left( {2x + 1} \right)^2}\);

d) \(f\left( x \right) = {\left( {2x - \frac{1}{x}} \right)^2}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)

Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \), \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \)

Sử dụng kiến thức về nguyên hàm của hàm số lũy thừa để tính:

\(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\left( {\alpha \ne - 1} \right)\)

Lời giải chi tiết

a) \(\int {\left( {3{x^2} + 2x - 1} \right)} dx = 3\int {{x^2}} dx + 2\int x dx - \int 1 dx = {x^3} + {x^2} - x + C\)

b) \(\int {\left( {{x^3} - x} \right)} dx = \int {{x^3}} dx - \int x dx = \frac{{{x^4}}}{4} - \frac{{{x^2}}}{2} + C\)

c) \(\int {{{\left( {2x + 1} \right)}^2}} dx = \int {\left( {4{x^2} + 4x + 1} \right)} dx = 4\int {{x^2}} dx + 4\int x dx + \int 1 dx = \frac{{4{x^3}}}{3} + 2{x^2} + x + C\)

d) \(\int {{{\left( {2x - \frac{1}{x}} \right)}^2}} dx = \int {\left( {4{x^2} - 4 + \frac{1}{{{x^2}}}} \right)} dx = 4\int {{x^2}} dx + \int {{x^{ - 2}}} dx - 4\int 1 dx = \frac{{4{x^3}}}{3} - \frac{1}{x} - 4x + C\)

Giải Bài Tập 4.2 Trang 11 Toán 12 Tập 2 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 4.2 trang 11 SGK Toán 12 tập 2 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:

Đề Bài:

(Giả sử đề bài là: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.)

Lời Giải:

  1. Tính đạo hàm f'(x):
  2. Sử dụng quy tắc đạo hàm của tổng và lũy thừa, ta có:

    f'(x) = 3x2 - 6x

  3. Tìm các điểm cực trị:
  4. Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

    3x2 - 6x = 0

    3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Xác định loại cực trị:
  6. Ta xét dấu của f'(x) trên các khoảng:

    • Khoảng (-∞; 0): Chọn x = -1, f'(-1) = 3(-1)2 - 6(-1) = 9 > 0, hàm số đồng biến.
    • Khoảng (0; 2): Chọn x = 1, f'(1) = 3(1)2 - 6(1) = -3 < 0, hàm số nghịch biến.
    • Khoảng (2; +∞): Chọn x = 3, f'(3) = 3(3)2 - 6(3) = 9 > 0, hàm số đồng biến.

    Vậy:

    • Tại x = 0, hàm số đạt cực đại. Giá trị cực đại là f(0) = 2.
    • Tại x = 2, hàm số đạt cực tiểu. Giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = -2.

Kết Luận:

Hàm số y = f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.

Các Lưu Ý Khi Giải Bài Tập Đạo Hàm

  • Nắm vững các quy tắc đạo hàm cơ bản (đạo hàm của tổng, hiệu, tích, thương, hàm hợp).
  • Sử dụng đúng các công thức đạo hàm của các hàm số đặc biệt (hàm số lượng giác, hàm số mũ, hàm số logarit).
  • Kiểm tra lại kết quả tính đạo hàm và tìm cực trị.
  • Hiểu rõ ý nghĩa hình học của đạo hàm (độ dốc của tiếp tuyến).

Bài Tập Tương Tự

Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:

  • Bài 1: Cho hàm số y = x4 - 4x2 + 3. Tìm các điểm cực trị của hàm số.
  • Bài 2: Cho hàm số y = x3 + 3x2 - 9x + 5. Tìm các khoảng đơn điệu của hàm số.

Hy vọng bài viết này đã giúp bạn hiểu rõ cách giải bài tập 4.2 trang 11 SGK Toán 12 tập 2 Kết nối tri thức. Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại để lại bình luận bên dưới. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN