1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Giải Bài Tập 1.43 Trang 44 Toán 12 Tập 1 - Kết Nối Tri Thức

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.43 trang 44 SGK Toán 12 tập 1 chương trình Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) (y = - {x^3} + 6{x^2} - 9x + 12); b) (y = frac{{2x - 1}}{{x + 1}}); c) (y = frac{{{x^2} - 2x}}{{x - 1}}).

Đề bài

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:a) \(y = - {x^3} + 6{x^2} - 9x + 12\);b) \(y = \frac{{2x - 1}}{{x + 1}}\);c) \(y = \frac{{{x^2} - 2x}}{{x - 1}}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về sơ đồ khảo sát hàm số để khảo sát và vẽ đồ thị hàm số:

1. Tìm tập xác định của hàm số.

2. Khảo sát sự biến thiên của hàm số:

+ Tính đạo hàm y’. Tìm các điểm tại đó y’ bằng 0 hoặc đạo hàm không tồn tại.

+ Xét dấu y’ để chỉ ra các khoảng đơn điệu của hàm số.

+ Tìm cực trị của hàm số.

+ Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận của đồ thị hàm số (nếu có).

+ Lập bảng biến thiên của hàm số.

3. Vẽ đồ thị của hàm số dựa vào bảng biến thiên

Lời giải chi tiết

a) 1. Tập xác định: \(D = \mathbb{R}\)

2. Sự biến thiên:

Ta có: \(y' = - 3{x^2} + 12x - 9,y' = 0 \Leftrightarrow - 3{x^2} + 12x - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)

Trên khoảng \(\left( {1;3} \right)\), \(y' > 0\) nên hàm số đồng biến. Trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\), \(y' < 0\) nên hàm số nghịch biến trên mỗi khoảng đó.

Hàm số đạt cực đại tại \(x = 3\), giá trị cực đại . Hàm số đạt cực tiểu tại \(x = 1\), giá trị cực tiểu \({y_{CT}} = 8\)

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - {x^3} + 6{x^2} - 9x + 12} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( { - 1 + \frac{6}{x} - \frac{9}{{{x^2}}} + \frac{{12}}{{{x^3}}}} \right)} \right] = + \infty \)

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 6{x^2} - 9x + 12} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^3}\left( { - 1 + \frac{6}{x} - \frac{9}{{{x^2}}} + \frac{{12}}{{{x^3}}}} \right)} \right] = - \infty \)

Bảng biến thiên:

Giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 2

3. Đồ thị:

Giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 3

Giao điểm của đồ thị hàm số \(y = - {x^3} + 6{x^2} - 9x + 12\) với trục tung là (0; 12).

Đồ thị hàm số \(y = - {x^3} + 6{x^2} - 9x + 12\) đi qua các điểm (1; 8); (3; 12); (4; 8).

Đồ thị hàm số có tâm đối xứng là điểm (2; 10).

b) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)

2. Sự biến thiên:

\(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}} > 0\forall x \ne - 1\)

Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

Hàm số không có cực trị.

Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x + 1}} = 2;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x + 1}} = 2\)\(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 1}}{{x + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 1}}{{x + 1}} = - \infty \)

Do đó, đồ thị hàm số nhận đường thẳng \(x = - 1\) làm tiệm cận đứng và đường thẳng \(y = 2\) làm tiệm cận ngang.

Bảng biến thiên:

Giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 4

3. Đồ thị: Giao điểm của đồ thị hàm số với trục tung là \(\left( {0; - 1} \right)\).

\(y = 0 \Leftrightarrow \frac{{2x - 1}}{{x + 1}} = 0 \Leftrightarrow x = \frac{1}{2}\)

Giao điểm của đồ thị hàm số với trục hoành là điểm \(\left( {\frac{1}{2};0} \right)\).

Đồ thị hàm số nhận giao điểm I(-1; 2) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.

Giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 5

c) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ 1 \right\}\)

2. Sự biến thiên:

Ta có: \(y = \frac{{{x^2} - 2x}}{{x - 1}} = x - 1 - \frac{1}{{x - 1}}\)

\(y' = \frac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x + 2}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{{\left( {x - 1} \right)}^2} + 1}}{{{{\left( {x - 1} \right)}^2}}} > 0\;\forall x \ne 1\)

Do đó, hàm số đồng biến trong khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

Hàm số không có cực trị.

Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2x}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 2x}}{{x - 1}} = - \infty \)\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 2x}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 2x}}{{x - 1}} = - \infty \)

\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {x - 1 - \frac{1}{{x - 1}} - \left( {x - 1} \right)} \right) = \mathop {\lim }\limits_{x \to + \infty } - \frac{1}{{x - 1}} = 0\)

\(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {x - 1 - \frac{1}{{x - 1}} - \left( {x - 1} \right)} \right) = \mathop {\lim }\limits_{x \to - \infty } - \frac{1}{{x - 1}} = 0\)

Do đó, đồ thị hàm số nhận đường thẳng \(x = 1\) làm tiệm cận đứng và đường thẳng \(y = x - 1\) làm tiệm cận xiên.

Bảng biến thiên:

Giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 6

3. Đồ thị:

Giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 7

Giao điểm của đồ thị hàm số với trục tung là (0; 0).

\(y = 0 \Leftrightarrow \frac{{{x^2} - 2x}}{{x - 1}} = 0 \Leftrightarrow x = 0\) hoặc \(x = 2\)

Đồ thị hàm số giao với trục hoành tại các điểm (0; 0) và (2; 0)

Đồ thị hàm số nhận giao điểm I(1; 0) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.

Giải Bài Tập 1.43 Trang 44 Toán 12 Tập 1 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 1.43 trang 44 SGK Toán 12 tập 1 Kết nối tri thức yêu cầu chúng ta vận dụng kiến thức về đạo hàm của hàm số để giải quyết. Cụ thể, bài toán thường liên quan đến việc tìm đạo hàm, xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số, hoặc tìm cực trị của hàm số.

Đề Bài Bài Tập 1.43 Trang 44 Toán 12 Tập 1 - Kết Nối Tri Thức

(Đề bài cụ thể của bài tập 1.43 sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm đạo hàm f'(x) và xác định khoảng đồng biến, nghịch biến của hàm số.)

Phương Pháp Giải Bài Tập Đạo Hàm

Để giải quyết bài tập về đạo hàm, chúng ta cần nắm vững các công thức đạo hàm cơ bản và các quy tắc tính đạo hàm như quy tắc cộng, trừ, nhân, chia, đạo hàm hàm hợp. Ngoài ra, việc hiểu rõ mối liên hệ giữa đạo hàm và tính đơn điệu của hàm số là vô cùng quan trọng.

Lời Giải Chi Tiết Bài Tập 1.43 Trang 44 Toán 12 Tập 1 - Kết Nối Tri Thức

Bước 1: Tính đạo hàm f'(x)

Áp dụng công thức đạo hàm của hàm số đa thức, ta có:

f'(x) = 3x2 - 6x

Bước 2: Xét dấu đạo hàm f'(x)

Để xét dấu đạo hàm, ta giải phương trình f'(x) = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Suy ra x = 0 hoặc x = 2

Ta lập bảng xét dấu đạo hàm:

x-∞02+∞
f'(x)+-+
f(x)Đồng biếnNghịch biếnĐồng biến

Bước 3: Kết luận

Hàm số y = f(x) đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).

Các Bài Tập Tương Tự

  • Bài tập 1.44 trang 44 SGK Toán 12 tập 1 Kết nối tri thức
  • Bài tập 1.45 trang 45 SGK Toán 12 tập 1 Kết nối tri thức

Lưu Ý Khi Giải Bài Tập Đạo Hàm

  1. Nắm vững các công thức đạo hàm cơ bản.
  2. Áp dụng đúng các quy tắc tính đạo hàm.
  3. Kiểm tra lại kết quả sau khi tính toán.
  4. Hiểu rõ mối liên hệ giữa đạo hàm và tính đơn điệu của hàm số.

Hy vọng với lời giải chi tiết này, các em học sinh đã hiểu rõ cách giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 Kết nối tri thức. Chúc các em học tập tốt!

Tusach.vn – Nơi đồng hành cùng các em trên mọi hành trình học tập.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN