Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 76, 77 sách giáo khoa Toán 12 tập 1 chương trình Kết nối tri thức. Bài viết này sẽ giúp học sinh hiểu rõ các khái niệm, công thức và phương pháp giải bài tập liên quan.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ quá trình học tập của bạn.
Khoảng biến thiên
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 76 SGK Toán 12 Kết nối tri thức
Trong tình huống mở đầu, gọi \({x_1},{x_2},...,{x_{30}}\) là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2021 (mẫu số liệu gốc).
a) Có thể tính chính xác khoảng biến thiên cho mẫu số liệu gốc hay không?
b) Giá trị lớn nhất, giá trị nhỏ nhất \({x_i}\) có thể nhận là gì?
c) Hãy đưa ra một giá trị xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc.
Phương pháp giải:
Sử dụng kiến thức về khoảng biến thiên khoảng biến thiên của mẫu số liệu gốc để tính: Khoảng biến thiên, kí hiệu là R, là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu.
Lời giải chi tiết:
a) Không thể tính chính xác khoảng biến thiên cho mẫu số liệu gốc.
b) Giá trị nhỏ nhất có thể là \({30^0}C\), giá trị lớn nhất là giá trị nhiệt độ lớn nhất có thể là \(39,{9^0}C\).
c) Một giá trị xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc là: \(39,9 - 30 = 9,9\left( {^0C} \right)\)
Video hướng dẫn giải
Trả lời câu hỏiLuyện tập 1 trang 77SGK Toán 12 Kết nối tri thức
Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12C được cho trong bảng sau:

a) Tính khoảng biến thiên R cho mẫu số liệu ghép nhóm trên.
b) Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là bao nhiêu?
Phương pháp giải:
Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để giải thích:
Cho mẫu số liệu ghép nhóm:

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).
Lời giải chi tiết:
a) Khoảng biến thiên R cho mẫu số liệu ghép nhóm trên là: \(45 - 25 = 20\)
b) Khoảng biến thiên của mẫu số liệu gốc là: \(43 - 27 = 16\)
Video hướng dẫn giải
Trả lời Câu hỏi trang 76 SGK Toán 12 Kết nối tri thức
Chỉ ra rằng khoảng biến thiên của mẫu số liệu ghép nhóm trong Bảng 3.1 lớn hơn khoảng biến thiên của mẫu số liệu gốc.

Phương pháp giải:
Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để giải thích:
Cho mẫu số liệu ghép nhóm:

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).
Lời giải chi tiết:
Khoảng biến thiên của mẫu số liệu ghép nhóm trong bảng 3.1 là: \(R = {a_{k + 1}} - {a_1}\).
Gọi giá trị nhỏ nhất của mẫu số liệu gốc là \({a_1}'\) thì \({a_1}' \ge {a_1}\).
Gọi giá trị lớn nhất của mẫu số liệu gốc là \({a_k}'\) thì \({a_{k + 1}}' < {a_{k + 1}}\).
Khi đó, khoảng biến thiên của mẫu số liệu gốc là: \(R' = {a_{k + 1}}' - {a_1}'\).
Do đó, \(R > R'\)
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm trong Bảng 3.1 lớn hơn khoảng biến thiên của mẫu số liệu gốc.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 76 SGK Toán 12 Kết nối tri thức
Trong tình huống mở đầu, gọi \({x_1},{x_2},...,{x_{30}}\) là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2021 (mẫu số liệu gốc).
a) Có thể tính chính xác khoảng biến thiên cho mẫu số liệu gốc hay không?
b) Giá trị lớn nhất, giá trị nhỏ nhất \({x_i}\) có thể nhận là gì?
c) Hãy đưa ra một giá trị xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc.
Phương pháp giải:
Sử dụng kiến thức về khoảng biến thiên khoảng biến thiên của mẫu số liệu gốc để tính: Khoảng biến thiên, kí hiệu là R, là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu.
Lời giải chi tiết:
a) Không thể tính chính xác khoảng biến thiên cho mẫu số liệu gốc.
b) Giá trị nhỏ nhất có thể là \({30^0}C\), giá trị lớn nhất là giá trị nhiệt độ lớn nhất có thể là \(39,{9^0}C\).
c) Một giá trị xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc là: \(39,9 - 30 = 9,9\left( {^0C} \right)\)
Video hướng dẫn giải
Trả lời Câu hỏi trang 76 SGK Toán 12 Kết nối tri thức
Chỉ ra rằng khoảng biến thiên của mẫu số liệu ghép nhóm trong Bảng 3.1 lớn hơn khoảng biến thiên của mẫu số liệu gốc.

Phương pháp giải:
Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để giải thích:
Cho mẫu số liệu ghép nhóm:

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).
Lời giải chi tiết:
Khoảng biến thiên của mẫu số liệu ghép nhóm trong bảng 3.1 là: \(R = {a_{k + 1}} - {a_1}\).
Gọi giá trị nhỏ nhất của mẫu số liệu gốc là \({a_1}'\) thì \({a_1}' \ge {a_1}\).
Gọi giá trị lớn nhất của mẫu số liệu gốc là \({a_k}'\) thì \({a_{k + 1}}' < {a_{k + 1}}\).
Khi đó, khoảng biến thiên của mẫu số liệu gốc là: \(R' = {a_{k + 1}}' - {a_1}'\).
Do đó, \(R > R'\)
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm trong Bảng 3.1 lớn hơn khoảng biến thiên của mẫu số liệu gốc.
Video hướng dẫn giải
Trả lời câu hỏiLuyện tập 1 trang 77SGK Toán 12 Kết nối tri thức
Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12C được cho trong bảng sau:

a) Tính khoảng biến thiên R cho mẫu số liệu ghép nhóm trên.
b) Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là bao nhiêu?
Phương pháp giải:
Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để giải thích:
Cho mẫu số liệu ghép nhóm:

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).
Lời giải chi tiết:
a) Khoảng biến thiên R cho mẫu số liệu ghép nhóm trên là: \(45 - 25 = 20\)
b) Khoảng biến thiên của mẫu số liệu gốc là: \(43 - 27 = 16\)
Mục 1 của chương trình Toán 12 tập 1 Kết nối tri thức tập trung vào việc ôn tập và mở rộng kiến thức về đạo hàm. Đây là một phần quan trọng, nền tảng cho các kiến thức nâng cao hơn trong chương trình. Việc nắm vững các khái niệm và kỹ năng giải bài tập trong mục này là vô cùng cần thiết để đạt kết quả tốt trong các kỳ thi.
Bài tập này yêu cầu học sinh vận dụng các quy tắc tính đạo hàm đã học để tính đạo hàm của các hàm số đơn giản. Ví dụ:
f(x) = x3 + 2x2 - 5x + 1
f'(x) = 3x2 + 4x - 5
Để giải bài tập này, học sinh cần sử dụng quy tắc đạo hàm của hàm hợp: y' = u' * v', trong đó u = 2x + 1 và v = sin(u).
y' = cos(2x + 1) * 2 = 2cos(2x + 1)
Bài tập này yêu cầu học sinh tìm các điểm mà tại đó hàm số có đạo hàm bằng 0, tức là các điểm cực trị của hàm số.
f'(x) = 2x - 4
2x - 4 = 0 => x = 2
Giải mục 1 trang 76, 77 SGK Toán 12 tập 1 - Kết nối tri thức là một bước quan trọng trong quá trình học tập môn Toán 12. Hy vọng rằng với lời giải chi tiết và các hướng dẫn trên, các bạn học sinh sẽ tự tin hơn trong việc giải quyết các bài tập và đạt kết quả tốt nhất.
Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục kiến thức. Chúc các bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập