Chào mừng các em học sinh đến với lời giải chi tiết bài tập 5.42 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức. Bài tập này thuộc chương trình học về tích phân và thường gây khó khăn cho nhiều học sinh.
Tusach.vn sẽ cung cấp đáp án chính xác, phương pháp giải dễ hiểu và các lưu ý quan trọng để giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Trong không gian Oxyz, cho mặt phẳng (P): \(x - 2y + 2z - 1 = 0\) và hai điểm \(A\left( {1; - 1;2} \right),B\left( { - 1;1;0} \right)\). a) Tính khoảng cách từ A đến mặt phẳng (P). b) Viết phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P). c) Viết phương trình mặt phẳng (R) chứa A, B và vuông góc với mặt phẳng (P).
Đề bài
Trong không gian Oxyz, cho mặt phẳng (P): \(x - 2y + 2z - 1 = 0\) và hai điểm \(A\left( {1; - 1;2} \right),B\left( { - 1;1;0} \right)\).
a) Tính khoảng cách từ A đến mặt phẳng (P).
b) Viết phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P).
c) Viết phương trình mặt phẳng (R) chứa A, B và vuông góc với mặt phẳng (P).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về khoảng cách từ một điểm đến một mặt phẳng để tính: Trong không gian Oxyz, khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + Cz + D = 0\) là \(d\left( {M,\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
b) Sử dụng kiến thức về phương trình mặt phẳng đi qua một điểm và biết vectơ pháp tuyến để viết phương trình: Trong không gian Oxyz, nếu mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\) thì có phương trình là:
\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0 \Leftrightarrow Ax + By + Cz + D = 0\) với \(D = - \left( {A{x_0} + B{y_0} + C{z_0}} \right)\)
c) Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:
+ Tìm vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).
+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).
Lời giải chi tiết
a) Khoảng cách từ điểm A đến (P) là: \(d\left( {A,\left( P \right)} \right) = \frac{{\left| {1.1 - 2.\left( { - 1} \right) + 2.2 - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = \frac{6}{3} = 2\)
b) Mặt phẳng (P) có \(\overrightarrow {{n_P}} = \left( {1; - 2;2} \right)\) là một vectơ pháp tuyến.
Vì mặt phẳng (Q) song song với mặt phẳng (P) nên mặt phẳng (Q) nhận vectơ \(\overrightarrow {{n_P}} = \left( {1; - 2;2} \right)\) làm một vectơ pháp tuyến. Mà (Q) đi qua điểm A nên phương trình mặt phẳng (Q) là: \(x - 1 - 2\left( {y + 1} \right) + 2\left( {z - 2} \right) = 0 \Leftrightarrow x - 2y + 2z - 7 = 0\)
c) Ta có: \(\overrightarrow {AB} \left( { - 2;2; - 2} \right) \Rightarrow \frac{{ - 1}}{2}\overrightarrow {AB} = \left( {1; - 1;1} \right)\)
\(\left[ {\overrightarrow {{n_P}} ;\frac{{ - 1}}{2}\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&2\\{ - 1}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 2}\\1&{ - 1}\end{array}} \right|} \right) = \left( {0;1;1} \right)\)
Mặt phẳng (R) đi qua điểm A và nhận vectơ \(\left[ {\overrightarrow {{n_P}} ;\frac{{ - 1}}{2}\overrightarrow {AB} } \right] = \left( {0;1;1} \right)\) làm một vectơ pháp tuyến nên phương trình mặt phẳng (R) là: \(y + 1 + z - 2 = 0 \Leftrightarrow y + z - 1 = 0\)
Bài tập 5.42 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức yêu cầu chúng ta tính diện tích hình phẳng giới hạn bởi các đường cong. Để giải bài tập này, chúng ta cần nắm vững kiến thức về tích phân xác định và cách xác định giới hạn tích phân.
Tính diện tích hình phẳng giới hạn bởi các đường y = x2 và y = 2x.
Để tìm giao điểm, ta giải phương trình: x2 = 2x
⇔ x2 - 2x = 0
⇔ x(x - 2) = 0
Vậy, x = 0 hoặc x = 2. Các giao điểm là (0, 0) và (2, 4).
Trên đoạn [0, 2], ta có 2x ≥ x2. Ví dụ, tại x = 1, 2(1) = 2 > 12 = 1.
Diện tích hình phẳng S được tính bằng công thức:
S = ∫02 (2x - x2) dx
S = [x2 - (x3/3)]02
S = (22 - (23/3)) - (02 - (03/3))
S = 4 - 8/3 = 4/3
Vậy, diện tích hình phẳng giới hạn bởi các đường y = x2 và y = 2x là 4/3 đơn vị diện tích.
Để luyện tập thêm, các em có thể tham khảo các bài tập tương tự trong SGK Toán 12 tập 2 - Kết nối tri thức và các đề thi thử Toán 12.
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác các bài tập Toán 12. Hãy truy cập tusach.vn để học Toán 12 hiệu quả và đạt kết quả cao trong các kỳ thi!
| Bài Tập | Trang | Lời Giải |
|---|---|---|
| 5.41 | 62 | Xem tại đây |
| 5.43 | 62 | Xem tại đây |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập