Chào mừng bạn đến với lời giải chi tiết bài tập 2 trang 90 SGK Toán 12 tập 2, chương trình Kết Nối Tri Thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất cho học sinh.
Giá trị lớn nhất M của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [2; 4] là A. \(M = 6\). B. \(M = 7\). C. \(M = \frac{{19}}{3}\). D. \(M = \frac{{20}}{3}\).
Đề bài
Giá trị lớn nhất M của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [2; 4] là
A. \(M = 6\).
B. \(M = 7\).
C. \(M = \frac{{19}}{3}\).
D. \(M = \frac{{20}}{3}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về cách tìm giá trị lớn nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).
Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):
1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.
2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).
3. Tìm số lớn nhất M trong các số trên. Ta có: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right)\)
Lời giải chi tiết
Ta có: \(y' = \frac{{\left( {{x^2} + 3} \right)'\left( {x - 1} \right) - {x^2} - 3}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2x\left( {x - 1} \right) - {x^2} - 3}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{\left( {x + 1} \right)\left( {x - 3} \right)}}{{{{\left( {x - 1} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\left( {TM} \right)\\x = - 1\left( {KTM} \right)\end{array} \right.\)
Ta có: \(y\left( 2 \right) = 7,y\left( 4 \right) = \frac{{19}}{3},y\left( 3 \right) = 6\). Do đó, \(M = \mathop {\max }\limits_{\left[ {2;4} \right]} y = y\left( 2 \right) = 7\)
Chọn B.
Bài tập 2 trang 90 SGK Toán 12 tập 2 thuộc chương trình Kết Nối Tri Thức là một bài tập quan trọng, thường xuất hiện trong các đề thi. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết, từng bước, giúp bạn hiểu rõ cách tiếp cận và giải quyết bài toán này.
Bài tập 2 thường liên quan đến việc tìm đạo hàm của hàm số, xét tính đơn điệu của hàm số, hoặc tìm cực trị của hàm số. Để giải quyết bài tập này, bạn cần nắm vững các kiến thức sau:
(Ở đây sẽ là lời giải chi tiết của bài tập 2, bao gồm các bước giải, giải thích rõ ràng và ví dụ minh họa. Ví dụ, nếu bài tập yêu cầu tìm đạo hàm của hàm số f(x) = x^2 + 2x + 1, lời giải sẽ như sau:)
Giải:
f'(x) = d/dx (x^2 + 2x + 1) = d/dx (x^2) + d/dx (2x) + d/dx (1) = 2x + 2 + 0 = 2x + 2
Vậy, đạo hàm của hàm số f(x) = x^2 + 2x + 1 là f'(x) = 2x + 2.
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến trên các trang web học tập uy tín.
Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục kiến thức Toán 12. Chúng tôi cung cấp đầy đủ các tài liệu học tập, bài giảng, bài tập và lời giải chi tiết, giúp bạn học tập hiệu quả và đạt kết quả tốt nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
| Chương | Bài | Liên kết |
|---|---|---|
| 1 | Bài 1 | Link đến bài 1 |
| 2 | Bài 2 | Link đến bài 2 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập