1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 3.3 trang 79 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 3.3 trang 79 SGK Toán 12 tập 1 - Kết nối tri thức

Giải Bài Tập 3.3 Trang 79 Toán 12 Tập 1 - Kết Nối Tri Thức

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 3.3 trang 79 SGK Toán 12 tập 1 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Bảng sau đây cho biết chiều cao của các học sinh lớp 12A và 12B. a) Tìm khoảng biến thiên, khoảng tứ phân vị cho các mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A, 12B. b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này ta nên dùng khoảng biến thiên hay khoảng tứ phân vị? Vì sao?

Đề bài

Bảng sau đây cho biết chiều cao của các học sinh lớp 12A và 12B.

Giải bài tập 3.3 trang 79 SGK Toán 12 tập 1 - Kết nối tri thức 1a) Tìm khoảng biến thiên, khoảng tứ phân vị cho các mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A, 12B.

b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này ta nên dùng khoảng biến thiên hay khoảng tứ phân vị? Vì sao?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 3.3 trang 79 SGK Toán 12 tập 1 - Kết nối tri thức 2

Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để tính:

Cho mẫu số liệu ghép nhóm:

Giải bài tập 3.3 trang 79 SGK Toán 12 tập 1 - Kết nối tri thức 3

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).

Sử dụng kiến thức về khoảng tứ phân vị của mẫu số liệu ghép nhóm để tính: Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu là \({\Delta _Q}\), là hiệu số giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu đó, tức là \({\Delta _Q} = {Q_3} - {Q_1}\).

Sử dụng kiến thức về ý nghĩa của khoảng tứ phân vị để giải thích: Khoảng tứ phân vị của mẫu số liệu ghép nhóm chỉ phụ thuộc vào nửa giữa của mẫu số liệu, không bị ảnh hưởng bởi các giá trị bất thường.

Lời giải chi tiết

a) Lớp 12A: Khoảng biến thiên: \(R = 175 - 145 = 30\)

Ta có cỡ mẫu \(n = 43\). Giả sử \({x_1},{x_2},...,{x_{43}}\) là chiều cao của các học sinh lớp 12A và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.

Vì \(\frac{n}{4} = 10,75\) và \(1 < 10,75 < 1 + 15\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {150;160} \right)\) và tứ phân vị thứ nhất là: \({Q_1} = 155 + \frac{{\frac{{43}}{4} - 1}}{{15}}.5 = 158,25\)

Vì \(\frac{{3n}}{4} = 32,25\) và \(1 + 15 + 12 < 32,25 < 1 + 15 + 12 + 10\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {165;170} \right)\) và tứ phân vị thứ ba là: \({Q_3} = 165 + \frac{{\frac{{3.43}}{4} - \left( {1 + 15 + 12} \right)}}{{10}}.5 = 167,125\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_1}}} = 167,125 - 158,25 = 8,875\)

Lớp 12B: Khoảng biến thiên: \(R = 175 - 155 = 20\)

Ta có cỡ mẫu \(n = 42\). Giả sử \({x_1},{x_2},...,{x_{42}}\) là chiều cao của các học sinh lớp 12B và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.

Vì \(\frac{n}{4} = 10,5\) và \(0 < 10,5 < 17\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {155;160} \right)\) và ta có: \(Q{'_1} = 155 + \frac{{\frac{{42}}{4} - 0}}{{17}}.5 = \frac{{5375}}{{34}}\)

Vì \(\frac{{3n}}{4} = 31,5\) và \(17 + 10 < 31,5 < 17 + 10 + 9\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {165;170} \right)\) và tứ phân vị thứ ba là: \(Q{'_3} = 165 + \frac{{\frac{{3.42}}{4} - \left( {17 + 10} \right)}}{9}.5 = \frac{{335}}{2}\)

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_2}}} = \frac{{335}}{2} - \frac{{5375}}{{34}} = \frac{{160}}{{17}}\)

b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này, ta nên dùng khoảng tứ phân vị vì khoảng tứ phân vị chỉ phụ thuộc vào nửa giữa của mẫu số liệu, không bị ảnh hưởng bởi các giá trị bất thường.

Giải Bài Tập 3.3 Trang 79 Toán 12 Tập 1 - Kết Nối Tri Thức: Chi Tiết và Dễ Hiểu

Bài tập 3.3 trang 79 SGK Toán 12 tập 1 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Đề Bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.

Lời Giải:

  1. Tính đạo hàm f'(x):
  2. Sử dụng quy tắc đạo hàm của tổng và lũy thừa, ta có:

    f'(x) = 3x2 - 6x

  3. Tìm các điểm cực trị:
  4. Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

    3x2 - 6x = 0

    3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Xác định loại cực trị:
  6. Ta xét dấu của f'(x) trên các khoảng:

    • Khoảng (-∞, 0): Chọn x = -1, f'(-1) = 3(-1)2 - 6(-1) = 9 > 0, hàm số đồng biến.
    • Khoảng (0, 2): Chọn x = 1, f'(1) = 3(1)2 - 6(1) = -3 < 0, hàm số nghịch biến.
    • Khoảng (2, +∞): Chọn x = 3, f'(3) = 3(3)2 - 6(3) = 9 > 0, hàm số đồng biến.

    Vậy:

    • Tại x = 0, hàm số đạt cực đại. Giá trị cực đại là f(0) = 03 - 3(0)2 + 2 = 2.
    • Tại x = 2, hàm số đạt cực tiểu. Giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = 0.

Kết Luận:

Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là 0.

Các Bài Tập Tương Tự:

Để củng cố kiến thức, các em có thể tham khảo các bài tập tương tự sau:

  • Bài tập 3.4 trang 79 SGK Toán 12 tập 1 Kết nối tri thức
  • Bài tập 3.5 trang 80 SGK Toán 12 tập 1 Kết nối tri thức

Lưu Ý:

Khi giải các bài tập về đạo hàm, các em cần nắm vững các quy tắc đạo hàm cơ bản và phương pháp tìm cực trị của hàm số. Việc thực hành thường xuyên sẽ giúp các em hiểu sâu hơn về kiến thức và giải quyết các bài tập một cách nhanh chóng và chính xác.

Tusach.vn hy vọng bài giải này sẽ giúp các em hiểu rõ hơn về bài tập 3.3 trang 79 SGK Toán 12 tập 1 Kết nối tri thức. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN