Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 2.13 trang 64 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Trong không gian Oxyz, cho ba vectơ (overrightarrow a ), (overrightarrow b ), (overrightarrow c ) đều khác (overrightarrow 0 ) và có giá đôi một vuông góc. Những mệnh đề nào sau đây là đúng? a) Có thể lập được một hệ tọa độ Oxyz có các trục tọa độ lần lượt song song với giá của các vectơ (overrightarrow a ), (overrightarrow b ), (overrightarrow c ). b) Có thể lập được một hệ tọa độ Oxyz có các trục tọa độ lần lượt trùng với giá của các vectơ (overrightarrow a ), (over
Đề bài
Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a \), \(\overrightarrow b \), \(\overrightarrow c \) đều khác \(\overrightarrow 0 \) và có giá đôi một vuông góc. Những mệnh đề nào sau đây là đúng?
a) Có thể lập được một hệ tọa độ Oxyz có các trục tọa độ lần lượt song song với giá của các vectơ \(\overrightarrow a \), \(\overrightarrow b \), \(\overrightarrow c \).
b) Có thể lập được một hệ tọa độ Oxyz có các trục tọa độ lần lượt trùng với giá của các vectơ \(\overrightarrow a \), \(\overrightarrow b \), \(\overrightarrow c \).
c) Có thể lập được một hệ tọa độ Oxyz có các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt bằng các vectơ \(\overrightarrow a \), \(\overrightarrow b \), \(\overrightarrow c \).
d) Có thể lập được một hệ tọa độ Oxyz có các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt cùng phương các vectơ \(\overrightarrow a \), \(\overrightarrow b \), \(\overrightarrow c \).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về hệ tọa độ trong không gian để tìm câu đúng: Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt là các vectơ đơn vị trên các trục Ox, Oy, Oz. Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz (hay đơn giản là hệ tọa độ Oxyz). Điểm O được gọi là gốc tọa độ, các mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau và được gọi là các mặt phẳng tọa độ. Không gian với hệ tọa độ Oxyz còn được gọi là không gian Oxyz.
Lời giải chi tiết
Các mệnh đề đúng là a) và d).
Bài tập 2.13 trang 64 SGK Toán 12 tập 1 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.
Sử dụng quy tắc đạo hàm của tổng và lũy thừa, ta có:
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Ta xét dấu của f'(x) trên các khoảng:
Vậy:
Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là 0.
Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự sau:
Khi giải các bài tập về đạo hàm, bạn cần nắm vững các quy tắc đạo hàm cơ bản và phương pháp tìm cực trị của hàm số. Hãy luyện tập thường xuyên để nâng cao kỹ năng giải toán.
Nếu bạn có bất kỳ thắc mắc nào, đừng ngần ngại đặt câu hỏi trong phần bình luận bên dưới. tusach.vn luôn sẵn sàng hỗ trợ bạn!
| Giai đoạn | Kết quả |
|---|---|
| Tính đạo hàm f'(x) | f'(x) = 3x2 - 6x |
| Giải phương trình f'(x) = 0 | x = 0 hoặc x = 2 |
| Điểm cực đại | x = 0, f(0) = 2 |
| Điểm cực tiểu | x = 2, f(2) = 0 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập