1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 1.34 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.34 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức

Giải Bài Tập 1.34 Trang 42 Toán 12 Tập 1 - Kết Nối Tri Thức

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 1.34 trang 42 một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giá trị lớn nhất của hàm số \(y = {\left( {x - 2} \right)^2}.{e^x}\) trên đoạn [1; 3] là: A. 0. B. \({e^3}\). C. \({e^4}\). D. e.

Đề bài

Giá trị lớn nhất của hàm số \(y = {\left( {x - 2} \right)^2}.{e^x}\) trên đoạn [1; 3] là:

A. 0.

B. \({e^3}\).

C. \({e^4}\).

D. e.

Phương pháp giải - Xem chi tiếtGiải bài tập 1.34 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về cách tìm giá trị lớn nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).

Các bước tìm giá trị lớn nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):

1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.

2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).

3. Tìm số nhỏ nhất m trong các số trên. Ta có: \(m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

Lời giải chi tiết

Ta có: \(y' = 2\left( {x - 2} \right){e^x} + {e^x}{\left( {x - 2} \right)^2},y' = 0 \Leftrightarrow 2\left( {x - 2} \right){e^x} + {e^x}{\left( {x - 2} \right)^2} = 0\)

\( \Leftrightarrow {e^x}\left( {2 + x - 2} \right)\left( {x - 2} \right) = 0 \Leftrightarrow x.{e^x}\left( {x - 2} \right) \Leftrightarrow x = 0\) hoặc \(x = 2\)

\(y\left( 0 \right) = 4;y\left( 1 \right) = e;y\left( 3 \right) = {e^3},y\left( 2 \right) = 0\)

Do đó, giá trị lớn nhất của hàm số \(y = {\left( {x - 2} \right)^2}.{e^x}\) trên đoạn [1; 3] là \({e^3}\).

Chọn B

Giải Bài Tập 1.34 Trang 42 Toán 12 Tập 1 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 1.34 trang 42 SGK Toán 12 tập 1 Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này thường liên quan đến việc xác định tính đơn điệu của hàm số, tìm khoảng đồng biến, nghịch biến và cực trị của hàm số. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

I. Đề Bài Bài Tập 1.34 Trang 42 Toán 12 Tập 1 - Kết Nối Tri Thức

(Đề bài cụ thể của bài tập 1.34 sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy tìm khoảng đồng biến, nghịch biến và cực trị của hàm số.)

II. Phương Pháp Giải Bài Tập Khảo Sát Hàm Số

Để giải bài tập khảo sát hàm số, bạn có thể thực hiện theo các bước sau:

  1. Xác định tập xác định của hàm số: Tìm các giá trị của x mà hàm số có nghĩa.
  2. Tính đạo hàm cấp nhất f'(x): Đạo hàm cấp nhất giúp xác định tính đơn điệu của hàm số.
  3. Tìm các điểm tới hạn: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng 0.
  4. Lập bảng biến thiên: Dựa vào dấu của f'(x) trên các khoảng xác định, ta có thể xác định khoảng đồng biến, nghịch biến của hàm số.
  5. Tìm cực trị của hàm số: Sử dụng dấu của f'(x) để xác định cực đại, cực tiểu của hàm số.
  6. Khảo sát giới hạn và tiệm cận: Xác định giới hạn của hàm số khi x tiến tới vô cùng và các giá trị đặc biệt.

III. Lời Giải Chi Tiết Bài Tập 1.34 Trang 42 Toán 12 Tập 1 - Kết Nối Tri Thức

(Lời giải chi tiết của bài tập 1.34 sẽ được trình bày ở đây, bao gồm các bước tính toán, giải thích và kết luận. Ví dụ:)

Bước 1: Tính đạo hàm cấp nhất của hàm số y = f(x) = x3 - 3x2 + 2:

f'(x) = 3x2 - 6x

Bước 2: Tìm các điểm tới hạn bằng cách giải phương trình f'(x) = 0:

3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2

Bước 3: Lập bảng biến thiên:

x-∞02+∞
f'(x)+-+
f(x)Đồng biếnNghịch biếnĐồng biến

Bước 4: Kết luận:

  • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
  • Hàm số nghịch biến trên khoảng (0; 2).
  • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
  • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

IV. Các Bài Tập Tương Tự

Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài tập 1.35 trang 42 SGK Toán 12 tập 1 Kết nối tri thức
  • Bài tập 1.36 trang 43 SGK Toán 12 tập 1 Kết nối tri thức

Hy vọng bài giải này sẽ giúp bạn hiểu rõ hơn về cách giải bài tập 1.34 trang 42 SGK Toán 12 tập 1 Kết nối tri thức. Chúc bạn học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN