Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 1.34 trang 42 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giá trị lớn nhất của hàm số \(y = {\left( {x - 2} \right)^2}.{e^x}\) trên đoạn [1; 3] là: A. 0. B. \({e^3}\). C. \({e^4}\). D. e.
Đề bài
Giá trị lớn nhất của hàm số \(y = {\left( {x - 2} \right)^2}.{e^x}\) trên đoạn [1; 3] là:
A. 0.
B. \({e^3}\).
C. \({e^4}\).
D. e.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về cách tìm giá trị lớn nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).
Các bước tìm giá trị lớn nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):
1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.
2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).
3. Tìm số nhỏ nhất m trong các số trên. Ta có: \(m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)
Lời giải chi tiết
Ta có: \(y' = 2\left( {x - 2} \right){e^x} + {e^x}{\left( {x - 2} \right)^2},y' = 0 \Leftrightarrow 2\left( {x - 2} \right){e^x} + {e^x}{\left( {x - 2} \right)^2} = 0\)
\( \Leftrightarrow {e^x}\left( {2 + x - 2} \right)\left( {x - 2} \right) = 0 \Leftrightarrow x.{e^x}\left( {x - 2} \right) \Leftrightarrow x = 0\) hoặc \(x = 2\)
\(y\left( 0 \right) = 4;y\left( 1 \right) = e;y\left( 3 \right) = {e^3},y\left( 2 \right) = 0\)
Do đó, giá trị lớn nhất của hàm số \(y = {\left( {x - 2} \right)^2}.{e^x}\) trên đoạn [1; 3] là \({e^3}\).
Chọn B
Bài tập 1.34 trang 42 SGK Toán 12 tập 1 Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này thường liên quan đến việc xác định tính đơn điệu của hàm số, tìm khoảng đồng biến, nghịch biến và cực trị của hàm số. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
(Đề bài cụ thể của bài tập 1.34 sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy tìm khoảng đồng biến, nghịch biến và cực trị của hàm số.)
Để giải bài tập khảo sát hàm số, bạn có thể thực hiện theo các bước sau:
(Lời giải chi tiết của bài tập 1.34 sẽ được trình bày ở đây, bao gồm các bước tính toán, giải thích và kết luận. Ví dụ:)
Bước 1: Tính đạo hàm cấp nhất của hàm số y = f(x) = x3 - 3x2 + 2:
f'(x) = 3x2 - 6x
Bước 2: Tìm các điểm tới hạn bằng cách giải phương trình f'(x) = 0:
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
Bước 3: Lập bảng biến thiên:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
Bước 4: Kết luận:
Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự sau:
Hy vọng bài giải này sẽ giúp bạn hiểu rõ hơn về cách giải bài tập 1.34 trang 42 SGK Toán 12 tập 1 Kết nối tri thức. Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập