Chào mừng các em học sinh đến với lời giải chi tiết mục 1 trang 67, 68 sách giáo khoa Toán 12 tập 1 chương trình Kết nối tri thức. Bài viết này sẽ giúp các em hiểu rõ các khái niệm, định lý và phương pháp giải bài tập liên quan.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và giải đáp mọi thắc mắc.
Biểu thức tọa độ của phép cộng hai vectơ, phép trừ hai vectơ, phép nhân một số với một vectơ
Trả lời câu hỏi Hoạt động 1 trang 67 SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {1;0;5} \right)\) và \(\overrightarrow b = \left( {1;3;9} \right)\).
a) Biểu diễn hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) qua các vectơ đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \).
b) Biểu diễn hai vectơ \(\overrightarrow a + \overrightarrow b \) và \(2\overrightarrow a \) qua các vectơ đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \), từ đó xác định tọa độ của hai vectơ đó.
Phương pháp giải:
Sử dụng kiến thức về tọa độ của vectơ trong không gian để tính: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).
Lời giải chi tiết:
a) Ta có: \(\overrightarrow a = \left( {1;0;5} \right) = \overrightarrow i + 5\overrightarrow k \); \(\overrightarrow b = \left( {1;3;9} \right) = \overrightarrow i + 3\overrightarrow j + 9\overrightarrow k \).
b) Ta có: \(\overrightarrow a + \overrightarrow b = \overrightarrow i + 5\overrightarrow k + \overrightarrow i + 3\overrightarrow j + 9\overrightarrow k = 2\overrightarrow i + 3\overrightarrow j + 14\overrightarrow k \). Do đó, \(\overrightarrow a + \overrightarrow b = \left( {2;3;14} \right)\)
\(2\overrightarrow a = 2\left( {\overrightarrow i + 5\overrightarrow k } \right) = 2\overrightarrow i + 10\overrightarrow k \). Do đó, \(2\overrightarrow a = \left( {2;0;10} \right)\)
Trả lời Câu hỏi trang 67 SGK Toán 12 Kết nối tri thức
Nếu tọa độ của vectơ \(\overrightarrow a \) là (x; y; z) thì tọa độ của vectơ đối của \(\overrightarrow a \) là gì?
Phương pháp giải:
Sử dụng kiến thức hệ về biểu thức tọa độ của phép nhân một số với một vectơ để tìm tọa độ của vectơ để tính: Trong không gian Oxyz cho vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) thì \(k\overrightarrow a = \left( {kx;ky;kz} \right)\) với k là một số thực.
Lời giải chi tiết:
Vectơ đối của \(\overrightarrow a \) là \( - \overrightarrow a \).
Tọa độ của vectơ đối của \(\overrightarrow a \) là: \(\left( { - x; - y; - z} \right)\).
Trả lời Luyện tập 1 trang 68SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho ba vectơ \(\overrightarrow u = \left( {1;8;6} \right),\overrightarrow v = \left( { - 1;3; - 2} \right)\) và \(\overrightarrow w = \left( {0;5;4} \right)\). Tìm tọa độ của vectơ \(\overrightarrow u - 2\overrightarrow v + \overrightarrow w \).
Phương pháp giải:
Sử dụng kiến thức hệ về biểu thức tọa độ của phép cộng hai vectơ, phép trừ hai vectơ, phép nhân một số với một vectơ để tìm tọa độ của vectơ: Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x';y';z'} \right)\). Ta có:
+ \(\overrightarrow a + \overrightarrow b = \left( {x + x';y + y';z + z'} \right)\);
+ \(\overrightarrow a - \overrightarrow b = \left( {x - x';y - y';z - z'} \right)\);
+ \(k\overrightarrow a = \left( {kx;ky;kz} \right)\) với k là một số thực.
Lời giải chi tiết:
\(\overrightarrow u - 2\overrightarrow v + \overrightarrow w = \left( {1;8;6} \right) - 2\left( { - 1;3; - 2} \right) + \left( {0;5;4} \right) = \left( {1 + 2;8 - 6 + 5;6 + 4 + 4} \right) = \left( {3;7;14} \right)\)
Trả lời Hoạt động 2 trang 68SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho tam giác ABC có \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\).
a) Gọi M là trung điểm của đoạn thẳng AB. Tìm tọa độ của M theo tọa độ của A và B.
b) Gọi G là trọng tâm của tam giác ABC. Tìm tọa độ của G theo tọa độ của A và B và C.
Phương pháp giải:
a) Sử dụng kiến thức về hệ thức trung điểm của đoạn thẳng để tính: Nếu M là trung điểm của AB thì \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\).
b) Sử dụng kiến thức về hệ thức trọng tâm của tam giác để tính: Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\).
Lời giải chi tiết:
Ta có: \(\overrightarrow {OA} = \left( {{x_A};{y_A};{z_A}} \right),\overrightarrow {OB} = \left( {{x_B};{y_B};{z_B}} \right),\overrightarrow {OC} = \left( {{x_C};{y_C};{z_C}} \right)\)
a) Vì M là trung điểm của AB nên \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\)\( \Rightarrow \left\{ \begin{array}{l}{x_M} = \frac{{{x_A} + {x_B}}}{2}\\{y_M} = \frac{{{y_A} + {y_B}}}{2}\\{z_M} = \frac{{{z_A} + {z_B}}}{2}\end{array} \right.\).
Do đó, \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\).
b) Vì G là trọng tâm của tam giác ABC nên \(\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\)
\( \Rightarrow \left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right.\). Do đó, \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).
Trả lời câu hỏi Hoạt động 1 trang 67 SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {1;0;5} \right)\) và \(\overrightarrow b = \left( {1;3;9} \right)\).
a) Biểu diễn hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) qua các vectơ đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \).
b) Biểu diễn hai vectơ \(\overrightarrow a + \overrightarrow b \) và \(2\overrightarrow a \) qua các vectơ đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \), từ đó xác định tọa độ của hai vectơ đó.
Phương pháp giải:
Sử dụng kiến thức về tọa độ của vectơ trong không gian để tính: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).
Lời giải chi tiết:
a) Ta có: \(\overrightarrow a = \left( {1;0;5} \right) = \overrightarrow i + 5\overrightarrow k \); \(\overrightarrow b = \left( {1;3;9} \right) = \overrightarrow i + 3\overrightarrow j + 9\overrightarrow k \).
b) Ta có: \(\overrightarrow a + \overrightarrow b = \overrightarrow i + 5\overrightarrow k + \overrightarrow i + 3\overrightarrow j + 9\overrightarrow k = 2\overrightarrow i + 3\overrightarrow j + 14\overrightarrow k \). Do đó, \(\overrightarrow a + \overrightarrow b = \left( {2;3;14} \right)\)
\(2\overrightarrow a = 2\left( {\overrightarrow i + 5\overrightarrow k } \right) = 2\overrightarrow i + 10\overrightarrow k \). Do đó, \(2\overrightarrow a = \left( {2;0;10} \right)\)
Trả lời Câu hỏi trang 67 SGK Toán 12 Kết nối tri thức
Nếu tọa độ của vectơ \(\overrightarrow a \) là (x; y; z) thì tọa độ của vectơ đối của \(\overrightarrow a \) là gì?
Phương pháp giải:
Sử dụng kiến thức hệ về biểu thức tọa độ của phép nhân một số với một vectơ để tìm tọa độ của vectơ để tính: Trong không gian Oxyz cho vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) thì \(k\overrightarrow a = \left( {kx;ky;kz} \right)\) với k là một số thực.
Lời giải chi tiết:
Vectơ đối của \(\overrightarrow a \) là \( - \overrightarrow a \).
Tọa độ của vectơ đối của \(\overrightarrow a \) là: \(\left( { - x; - y; - z} \right)\).
Trả lời Luyện tập 1 trang 68SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho ba vectơ \(\overrightarrow u = \left( {1;8;6} \right),\overrightarrow v = \left( { - 1;3; - 2} \right)\) và \(\overrightarrow w = \left( {0;5;4} \right)\). Tìm tọa độ của vectơ \(\overrightarrow u - 2\overrightarrow v + \overrightarrow w \).
Phương pháp giải:
Sử dụng kiến thức hệ về biểu thức tọa độ của phép cộng hai vectơ, phép trừ hai vectơ, phép nhân một số với một vectơ để tìm tọa độ của vectơ: Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x';y';z'} \right)\). Ta có:
+ \(\overrightarrow a + \overrightarrow b = \left( {x + x';y + y';z + z'} \right)\);
+ \(\overrightarrow a - \overrightarrow b = \left( {x - x';y - y';z - z'} \right)\);
+ \(k\overrightarrow a = \left( {kx;ky;kz} \right)\) với k là một số thực.
Lời giải chi tiết:
\(\overrightarrow u - 2\overrightarrow v + \overrightarrow w = \left( {1;8;6} \right) - 2\left( { - 1;3; - 2} \right) + \left( {0;5;4} \right) = \left( {1 + 2;8 - 6 + 5;6 + 4 + 4} \right) = \left( {3;7;14} \right)\)
Trả lời Hoạt động 2 trang 68SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho tam giác ABC có \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\).
a) Gọi M là trung điểm của đoạn thẳng AB. Tìm tọa độ của M theo tọa độ của A và B.
b) Gọi G là trọng tâm của tam giác ABC. Tìm tọa độ của G theo tọa độ của A và B và C.
Phương pháp giải:
a) Sử dụng kiến thức về hệ thức trung điểm của đoạn thẳng để tính: Nếu M là trung điểm của AB thì \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\).
b) Sử dụng kiến thức về hệ thức trọng tâm của tam giác để tính: Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\).
Lời giải chi tiết:
Ta có: \(\overrightarrow {OA} = \left( {{x_A};{y_A};{z_A}} \right),\overrightarrow {OB} = \left( {{x_B};{y_B};{z_B}} \right),\overrightarrow {OC} = \left( {{x_C};{y_C};{z_C}} \right)\)
a) Vì M là trung điểm của AB nên \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\)\( \Rightarrow \left\{ \begin{array}{l}{x_M} = \frac{{{x_A} + {x_B}}}{2}\\{y_M} = \frac{{{y_A} + {y_B}}}{2}\\{z_M} = \frac{{{z_A} + {z_B}}}{2}\end{array} \right.\).
Do đó, \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\).
b) Vì G là trọng tâm của tam giác ABC nên \(\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\)
\( \Rightarrow \left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right.\). Do đó, \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).
Trả lời Luyện tập 2 trang 69SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho ba điểm \(A\left( {2;9; - 1} \right),B\left( {9;4;5} \right)\) và \(G\left( {3;0;4} \right)\). Tìm tọa độ điểm C sao cho tam giác ABC nhận G là trọng tâm.
Phương pháp giải:
Sử dụng kiến thức về công thức tọa độ trọng tâm của tam giác để tính: Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\). Khi đó, tọa độ trọng tâm của tam giác ABC là \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).
Lời giải chi tiết:
Để G là trọng tâm của tam giác ABC thì
\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.3 - 2 - 9 = - 2\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.0 - 9 - 4 = - 13\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.4 + 1 - 5 = 8\end{array} \right.\)
Vậy \(C\left( { - 2; - 13;8} \right)\)
Trả lời Luyện tập 2 trang 69SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho ba điểm \(A\left( {2;9; - 1} \right),B\left( {9;4;5} \right)\) và \(G\left( {3;0;4} \right)\). Tìm tọa độ điểm C sao cho tam giác ABC nhận G là trọng tâm.
Phương pháp giải:
Sử dụng kiến thức về công thức tọa độ trọng tâm của tam giác để tính: Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\). Khi đó, tọa độ trọng tâm của tam giác ABC là \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).
Lời giải chi tiết:
Để G là trọng tâm của tam giác ABC thì
\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.3 - 2 - 9 = - 2\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.0 - 9 - 4 = - 13\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.4 + 1 - 5 = 8\end{array} \right.\)
Vậy \(C\left( { - 2; - 13;8} \right)\)
Mục 1 trang 67, 68 SGK Toán 12 tập 1 - Kết nối tri thức tập trung vào việc ôn tập về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Đây là một phần kiến thức nền tảng quan trọng, thường xuyên xuất hiện trong các bài kiểm tra và kỳ thi THPT Quốc gia. Bài viết này sẽ cung cấp lời giải chi tiết từng bài tập, kèm theo các lưu ý quan trọng để giúp các em hiểu sâu sắc và vận dụng linh hoạt kiến thức đã học.
Dưới đây là lời giải chi tiết từng bài tập trong Mục 1 trang 67, 68 SGK Toán 12 tập 1 - Kết nối tri thức:
Lời giải:
Lời giải:
y' = 2x - 4
y' = 0 ⇔ x = 2
Bảng biến thiên:
| x | -∞ | 2 | +∞ |
|---|---|---|---|
| y' | - | 0 | + |
| y | -∞ | -1 | +∞ |
Hàm số nghịch biến trên (-∞; 2) và đồng biến trên (2; +∞).
Lời giải:
y' = 3x2 - 6x
y' = 0 ⇔ x = 0 hoặc x = 2
Bảng biến thiên:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | 0 | - | + |
| y | -∞ | 2 | -2 | +∞ |
Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.
Hy vọng bài viết này đã giúp các em hiểu rõ hơn về Mục 1 trang 67, 68 SGK Toán 12 tập 1 - Kết nối tri thức. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập