Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn từng bước giải bài tập 4.15 trang 25, giúp bạn hiểu rõ phương pháp và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, dễ hiểu và hữu ích nhất cho học sinh.
Tính diện tích của hình phẳng giới hạn bởi các đường: a) \(y = {e^x},y = {x^2} - 1,x = - 1,x = 1\); b) \(y = \sin x,y = x,x = \frac{\pi }{2},x = \pi \); c) \(y = 9 - {x^2},y = 2{x^2},x = - \sqrt 3 ,x = \sqrt 3 \); d) \(y = \sqrt x ,y = {x^2},x = 0,x = 1\).
Đề bài
Tính diện tích của hình phẳng giới hạn bởi các đường:
a) \(y = {e^x},y = {x^2} - 1,x = - 1,x = 1\);
b) \(y = \sin x,y = x,x = \frac{\pi }{2},x = \pi \);
c) \(y = 9 - {x^2},y = 2{x^2},x = - \sqrt 3 ,x = \sqrt 3 \);
d) \(y = \sqrt x ,y = {x^2},x = 0,x = 1\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về diện tích hình phẳng giới hạn bởi hai đồ thị hàm số và đường thẳng \(x = a,x = b\) để tính: Diện tích S của hình phẳng giới hạn đồ thị của hai hàm số f(x), g(x) liên tục trên đoạn [a; b] và hai đường thẳng \(x = a,x = b\), được tính bằng công thức \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Lời giải chi tiết
a) Diện tích hình cần tìm là:
\(S = \int\limits_{ - 1}^1 {\left| {{e^x} - {x^2} + 1} \right|dx} = \int\limits_{ - 1}^1 {\left( {{e^x} - {x^2} + 1} \right)dx} = \left( {{e^x} - \frac{{{x^3}}}{3} + x} \right)\left| \begin{array}{l}1\\ - 1\end{array} \right.\)
\( = e - \frac{1}{3} + 1 - \left( {\frac{1}{e} + \frac{1}{3} - 1} \right) = e - \frac{1}{e} + \frac{4}{3}\)
b) Diện tích hình cần tính là:
\(S = \int\limits_{\frac{\pi }{2}}^\pi {\left| {\sin x - x} \right|dx} = - \int\limits_{\frac{\pi }{2}}^\pi {\left( {\sin x - x} \right)dx} = \left( {\cos x + \frac{{{x^2}}}{2}} \right)\left| \begin{array}{l}\pi \\\frac{\pi }{2}\end{array} \right.\)
\( = \cos \pi + \frac{{{\pi ^2}}}{2} - \cos \frac{\pi }{2} - \frac{{{\pi ^2}}}{8} = - 1 + \frac{{3{\pi ^2}}}{8}\)
c) Diện tích hình cần tính là:
\(S = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left| {9 - {x^2} - 2{x^2}} \right|dx} = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left( {9 - 3{x^2}} \right)dx} = \left( {9x - {x^3}} \right)\left| \begin{array}{l}\sqrt 3 \\ - \sqrt 3 \end{array} \right.\)
\( = 9\sqrt 3 - {\left( {\sqrt 3 } \right)^3} + 9\sqrt 3 + {\left( { - \sqrt 3 } \right)^3} = 12\sqrt 3 \)
d) Diện tích hình cần tính là:
\(S = \int\limits_0^1 {\left| {\sqrt x - {x^2}} \right|dx} = \int\limits_0^1 {\left( {\sqrt x - {x^2}} \right)dx} = \left( {\frac{{2x\sqrt x }}{3} - \frac{{{x^3}}}{3}} \right)\left| \begin{array}{l}1\\0\end{array} \right. = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}\)
Bài tập 4.15 trang 25 SGK Toán 12 tập 2 Kết nối tri thức là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
(Giả sử đề bài là: Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)
Hàm số f(x) = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.
f'(x) = 3x2 - 6x
Giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Suy ra x = 0 hoặc x = 2
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | ↗ | ↘ | ↗ |
Dựa vào bảng biến thiên, ta thấy:
Khi giải các bài toán về cực trị của hàm số, bạn cần lưu ý các bước sau:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Hy vọng với hướng dẫn chi tiết này, bạn đã hiểu rõ cách giải bài tập 4.15 trang 25 SGK Toán 12 tập 2 Kết nối tri thức. Hãy luyện tập thường xuyên để nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại để lại bình luận bên dưới. tusach.vn luôn sẵn sàng hỗ trợ bạn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập