Chào mừng các em học sinh đến với lời giải chi tiết bài tập 5.21 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức. Bài tập này thuộc chương trình học về tích phân và thường gây khó khăn cho nhiều học sinh.
Tusach.vn sẽ cung cấp đáp án chính xác, phương pháp giải dễ hiểu và các lưu ý quan trọng để giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Trong không gian Oxyz, tính góc giữa trục Oz và mặt phẳng \(\left( P \right):x + 2y - z - 1 = 0\).
Đề bài
Trong không gian Oxyz, tính góc giữa trục Oz và mặt phẳng \(\left( P \right):x + 2y - z - 1 = 0\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính: Trong không gian Oxyz, cho đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\). và mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\). Khi đó: \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {aA + bB + cC} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{A^2} + {B^2} + {C^2}} }}\)
Lời giải chi tiết
Trục Oz có vectơ chỉ phương \(\overrightarrow u = \left( {0;0;1} \right)\), mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {1;2; - 1} \right)\). Ta có: \(\sin \left( {Oz,\left( P \right)} \right) = \frac{{\left| {0.1 + 0.2 + 1.\left( { - 1} \right)} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} .\sqrt {{1^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{1}{{\sqrt 6 }}\)
Do đó, góc giữa trục Oz và mặt phẳng (P) khoảng \(24,{1^o}\).
Bài tập 5.21 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức yêu cầu chúng ta tính diện tích hình phẳng giới hạn bởi các đường cong. Để giải bài tập này, chúng ta cần nắm vững kiến thức về tích phân xác định và cách xác định giới hạn tích phân.
Tính diện tích hình phẳng giới hạn bởi các đường y = x2 và y = 2x.
Để tìm giao điểm, ta giải phương trình: x2 = 2x
⇔ x2 - 2x = 0
⇔ x(x - 2) = 0
Vậy, x = 0 hoặc x = 2. Các giao điểm là (0, 0) và (2, 4).
Trên đoạn [0, 2], ta có 2x ≥ x2. Ví dụ, tại x = 1, 2(1) = 2 > 12 = 1.
Diện tích hình phẳng S được tính bằng công thức:
S = ∫02 (2x - x2) dx
S = [x2 - (x3/3)]02
S = (22 - (23/3)) - (02 - (03/3))
S = 4 - 8/3 = 4/3
Vậy, diện tích hình phẳng giới hạn bởi các đường y = x2 và y = 2x là 4/3 đơn vị diện tích.
Để luyện tập thêm, các em có thể tham khảo các bài tập sau:
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác các bài tập trong SGK Toán 12 tập 2 - Kết nối tri thức. Hãy truy cập tusach.vn để học Toán 12 hiệu quả và đạt kết quả cao!
| Bài Tập | Đáp Án |
|---|---|
| 5.21 | 4/3 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập