Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 5.22 trang 53 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Tính góc giữa đường thẳng \(\Delta :\frac{{x + 1}}{{ - 1}} = \frac{{y - 3}}{2} = \frac{{z + 2}}{3}\) và mặt phẳng \(\left( P \right):x + y + z + 3 = 0\).
Đề bài
Tính góc giữa đường thẳng \(\Delta :\frac{{x + 1}}{{ - 1}} = \frac{{y - 3}}{2} = \frac{{z + 2}}{3}\) và mặt phẳng \(\left( P \right):x + y + z + 3 = 0\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính: Trong không gian Oxyz, cho đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\). và mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\). Khi đó: \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {aA + bB + cC} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{A^2} + {B^2} + {C^2}} }}\)
Lời giải chi tiết
Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( { - 1;2;3} \right)\), mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {1;1;1} \right)\). Ta có: \(\sin \left( {\Delta ,\left( P \right)} \right) = \frac{{\left| {\left( { - 1} \right).1 + 2.1 + 3.1} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {3^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{4}{{\sqrt {42} }}\)
Do đó, góc giữa đường thẳng \(\Delta \) và mặt phẳng (P) khoảng \(38,{1^o}\).
Bài tập 5.22 trang 53 SGK Toán 12 tập 2 Kết nối tri thức thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tối ưu hóa.
(Đề bài sẽ được chèn vào đây - ví dụ: Một người nông dân muốn rào một mảnh đất hình chữ nhật có diện tích 100m2. Hỏi người đó cần dùng bao nhiêu mét lưới để rào mảnh đất đó, biết rằng chi phí làm hàng rào là 50.000 đồng/mét?)
Để giải quyết bài tập tối ưu hóa, chúng ta thường thực hiện các bước sau:
(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước thực hiện theo phương pháp trên. Ví dụ:)
Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là x và y (x, y > 0). Diện tích mảnh đất là xy = 100. Chu vi mảnh đất là P = 2(x + y). Chúng ta cần tìm giá trị nhỏ nhất của P.
Từ xy = 100, ta có y = 100/x. Thay vào P, ta được P(x) = 2(x + 100/x). Đạo hàm P'(x) = 2(1 - 100/x2). Giải P'(x) = 0, ta được x = 10. Khi x = 10, y = 10. P''(x) = 2(200/x3). P''(10) > 0, vậy x = 10 là điểm cực tiểu. Vậy chu vi nhỏ nhất là P = 2(10 + 10) = 40m.
Khi giải bài tập tối ưu hóa, cần chú ý:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài tập 5.22 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức. Hãy luyện tập thêm các bài tập tương tự để nắm vững kiến thức và kỹ năng giải toán.
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập