Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 2.39 trang 74 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.
Đề bài
Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.
Phương pháp giải - Xem chi tiết
Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.
Lời giải chi tiết

Ta có: O(0; 0; 0)
Vì OABC.O’A’B’C’ là hình hộp nên \(\overrightarrow {AA'} = \overrightarrow {OO'} \Rightarrow \left\{ \begin{array}{l}{x_{A'}} - {x_A} = {x_{O'}} - {x_O}\\{y_{A'}} - {y_A} = {y_{O'}} - {y_O}\\{z_{A'}} - {z_A} = {z_{O'}} - {z_O}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = {x_{O'}} - {x_O} + {x_A} = 3\\{y_{A'}} = {y_{O'}} - {y_O} + {y_A} = 1\\{z_{A'}} = {z_{O'}} - {z_O} + {z_A} = 3\end{array} \right. \Rightarrow A'\left( {3;1;3} \right)\)
\(\overrightarrow {CC'} = \overrightarrow {OO'} \Rightarrow \left\{ \begin{array}{l}{x_{C'}} - {x_C} = {x_{O'}} - {x_O}\\{y_{C'}} - {y_C} = {y_{O'}} - {y_O}\\{z_{C'}} - {z_C} = {z_{O'}} - {z_O}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{C'}} = {x_{O'}} - {x_O} + {x_C} = 0\\{y_{C'}} = {y_{O'}} - {y_O} + {y_C} = 0\\{z_{C'}} = {z_{O'}} - {z_O} + {z_C} = 5\end{array} \right. \Rightarrow C'\left( {0;0;5} \right)\)
Vì ABCO là hình bình hành nên \(\overrightarrow {CB} = \overrightarrow {OA} \Rightarrow \left\{ \begin{array}{l}{x_B} + 1 = 2\\{y_B} - 2 = 3\\{z_B} - 3 = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_B} = 1\\{y_B} = 5\\{z_B} = 4\end{array} \right. \Rightarrow B\left( {1;5;4} \right)\)
Vì OABC.O’A’B’C’ là hình hộp nên \(\overrightarrow {BB'} = \overrightarrow {OO'} \Rightarrow \left\{ \begin{array}{l}{x_{B'}} - 1 = 1\\{y_{B'}} - 5 = - 2\\{z_{B'}} - 4 = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{B'}} = 2\\{y_{B'}} = 3\\{z_{B'}} = 6\end{array} \right. \Rightarrow B'\left( {2;3;6} \right)\)
Bài tập 2.39 trang 74 SGK Toán 12 tập 1 Kết nối tri thức thuộc chương trình học về đạo hàm. Để giải bài tập này, chúng ta cần nắm vững các kiến thức về:
(Đề bài cụ thể của bài tập 2.39 sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x3 - 3x + 2. Tính f'(x) và f'(1).)
Để giải bài tập này, chúng ta thực hiện các bước sau:
Sử dụng quy tắc đạo hàm của hàm đa thức, ta có:
f'(x) = d/dx (x3 - 3x + 2) = 3x2 - 3
Thay x = 1 vào biểu thức f'(x), ta được:
f'(1) = 3(1)2 - 3 = 3 - 3 = 0
Vậy, đạo hàm của hàm số f(x) = x3 - 3x + 2 là f'(x) = 3x2 - 3 và f'(1) = 0.
Ngoài bài tập 2.39, chương này còn nhiều bài tập khác yêu cầu tính đạo hàm. Để giải các bài tập này, bạn cần:
(Đề bài bài tập tương tự sẽ được chèn vào đây. Ví dụ: Cho hàm số y = g(x) = 2x2 + 5x - 1. Tính g'(x) và g'(2).)
Hãy tự giải bài tập này để củng cố kiến thức và kỹ năng của bạn.
Khi giải bài tập về đạo hàm, bạn cần chú ý:
Nếu bạn gặp khó khăn trong quá trình giải bài tập, đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè để được giúp đỡ.
Tusach.vn luôn cập nhật những lời giải bài tập mới nhất và chính xác nhất, giúp bạn học tập hiệu quả hơn. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chương | Bài | Liên kết |
|---|---|---|
| 1 | 1.1 | Giải bài tập 1.1 |
| 1 | 1.2 | Giải bài tập 1.2 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập