1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 1.17 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.17 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức

Giải Bài Tập 1.17 Trang 25 Toán 12 Tập 1 - Kết Nối Tri Thức

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 1.17 trang 25 một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Đường thẳng \(x = 1\) có phải là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 3}}{{x - 1}}\) không?

Đề bài

Đường thẳng \(x = 1\) có phải là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 3}}{{x - 1}}\) không?

Phương pháp giải - Xem chi tiếtGiải bài tập 1.17 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)

Lời giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 3} \right) = 4\)

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 3} \right) = 4\)

Do đó, đường thẳng \(x = 1\) không là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 3}}{{x - 1}}\).

Giải Bài Tập 1.17 Trang 25 Toán 12 Tập 1 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 1.17 trang 25 SGK Toán 12 tập 1 Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này thường liên quan đến việc xác định tính đơn điệu của hàm số, tìm khoảng đồng biến, nghịch biến và cực trị của hàm số. Dưới đây là hướng dẫn giải chi tiết bài tập này:

Đề Bài:

(Giả sử đề bài là: Cho hàm số y = x3 - 3x2 + 2. Tìm khoảng đồng biến, nghịch biến và cực trị của hàm số.)

Lời Giải:

  1. Tính đạo hàm cấp nhất:
  2. y' = 3x2 - 6x

  3. Tìm điểm dừng:
  4. y' = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2 là các điểm dừng.

  5. Lập bảng xét dấu y':
  6. x-∞02+∞
    y'+-+
    yĐồng biếnNghịch biếnĐồng biến
  7. Kết luận:
    • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
    • Hàm số nghịch biến trên khoảng (0; 2).
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu Ý Quan Trọng:

Khi giải các bài tập về hàm số, bạn cần nắm vững các kiến thức cơ bản về đạo hàm, điểm dừng, bảng xét dấu và các khái niệm liên quan đến tính đơn điệu và cực trị. Việc vẽ đồ thị hàm số cũng giúp bạn hiểu rõ hơn về tính chất của hàm số.

Các Bài Tập Tương Tự:

Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự trong SGK Toán 12 tập 1 Kết nối tri thức và các tài liệu luyện tập khác. Hãy luyện tập thường xuyên để nâng cao kỹ năng giải toán của mình.

Tại Sao Nên Chọn tusach.vn?

  • Lời giải chi tiết, dễ hiểu: Chúng tôi cung cấp lời giải đầy đủ, rõ ràng, giúp bạn hiểu sâu sắc về bài toán.
  • Cập nhật liên tục: Các lời giải được cập nhật thường xuyên, đảm bảo tính chính xác và phù hợp với chương trình học.
  • Giao diện thân thiện: Website được thiết kế dễ sử dụng, giúp bạn tìm kiếm thông tin nhanh chóng và thuận tiện.
  • Hỗ trợ nhiệt tình: Đội ngũ hỗ trợ của tusach.vn luôn sẵn sàng giải đáp mọi thắc mắc của bạn.

Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN