1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 5.14 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 5.14 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức

Giải Bài Tập 5.14 Trang 48 Toán 12 Tập 2 - Kết Nối Tri Thức

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 5.14 trang 48 một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 - t\\z = 2 + 3t\end{array} \right.\) và \({\Delta _2}:\frac{{x - 8}}{{ - 1}} = \frac{{y + 2}}{1} = \frac{{z - 2}}{2}\). a) Chứng minh rằng \({\Delta _1}\) và \({\Delta _2}\) cắt nhau. b) Viết phương trình mặt phẳng (P) chứa \({\Delta _1}\) và \({\Delta _2}\).

Đề bài

Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 - t\\z = 2 + 3t\end{array} \right.\) và \({\Delta _2}:\frac{{x - 8}}{{ - 1}} = \frac{{y + 2}}{1} = \frac{{z - 2}}{2}\).

a) Chứng minh rằng \({\Delta _1}\) và \({\Delta _2}\) cắt nhau.

b) Viết phương trình mặt phẳng (P) chứa \({\Delta _1}\) và \({\Delta _2}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 5.14 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để chứng minh: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) lần lượt đi qua các điểm \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\) và tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó: \({\Delta _1}\) và \({\Delta _2}\) cắt nhau \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 0\end{array} \right.\) .

Lời giải chi tiết

a) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} \left( {2; - 1;3} \right)\) và đi qua điểm \({A_1}\left( {1;3;2} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( { - 1;1;2} \right)\) và đi qua điểm \({A_2}\left( {8; - 2;2} \right)\).

Vì \(\frac{1}{8} \ne \frac{3}{{ - 2}}\) nên hai vectơ \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) không cùng phương.

Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&3\\1&2\end{array}} \right|,\left| {\begin{array}{*{20}{c}}3&2\\2&{ - 1}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&1\end{array}} \right|} \right) = \left( { - 5; - 7;1} \right) \ne \overrightarrow 0 \), \(\overrightarrow {{A_1}{A_2}} \left( {7; - 5;0} \right)\)

Vì \(\overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 7.\left( { - 5} \right) + \left( { - 5} \right).\left( { - 7} \right) + 0.1 = 0\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 5; - 7;1} \right) \ne \overrightarrow 0 \) nên \({\Delta _1}\) và \({\Delta _2}\) cắt nhau.

b) Vì mặt phẳng (P) chứa \({\Delta _1}\) và \({\Delta _2}\), \({\Delta _1}\) và \({\Delta _2}\) cắt nhau nên mặt phẳng (P) nhận \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 5; - 7;1} \right)\) là một vectơ pháp tuyến. Lại có, điểm \({A_1}\left( {1;3;2} \right)\) thuộc mặt phẳng (P) nên phương trình mặt phẳng (P) là: \( - 5\left( {x - 1} \right) - 7\left( {y - 3} \right) + 1\left( {z - 2} \right) = 0 \Leftrightarrow - 5x - 7y + z + 24 = 0\).

Giải Bài Tập 5.14 Trang 48 Toán 12 Tập 2 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 5.14 trang 48 SGK Toán 12 tập 2 Kết nối tri thức thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, liên quan đến việc tìm cực trị của hàm số hoặc khảo sát hàm số.

Nội dung bài tập 5.14 trang 48 SGK Toán 12 tập 2 Kết nối tri thức

Để giải quyết bài tập này một cách hiệu quả, trước tiên chúng ta cần nắm vững các kiến thức cơ bản sau:

  • Đạo hàm của hàm số: Định nghĩa, các quy tắc tính đạo hàm (đạo hàm của tổng, hiệu, tích, thương, hàm hợp).
  • Điều kiện cần để hàm số đạt cực trị: Hàm số y = f(x) đạt cực trị tại x0 khi và chỉ khi f'(x0) = 0 và f''(x0) ≠ 0.
  • Khảo sát hàm số: Xác định khoảng đồng biến, nghịch biến, cực trị, điểm uốn của hàm số.

Lời giải chi tiết bài tập 5.14 trang 48 SGK Toán 12 tập 2 Kết nối tri thức

(Ở đây sẽ là lời giải chi tiết của bài tập 5.14. Ví dụ, giả sử bài tập yêu cầu tìm cực trị của hàm số f(x) = x3 - 3x2 + 2)

  1. Bước 1: Tính đạo hàm cấp một f'(x).
  2. Bước 2: Tìm các điểm làm đạo hàm cấp một bằng 0.
  3. Bước 3: Tính đạo hàm cấp hai f''(x).
  4. Bước 4: Xác định loại cực trị tại các điểm tìm được ở Bước 2.
  5. Bước 5: Kết luận về cực trị của hàm số.

Ví dụ:

f(x) = x3 - 3x2 + 2

f'(x) = 3x2 - 6x

Giải phương trình f'(x) = 0, ta được x = 0 hoặc x = 2

f''(x) = 6x - 6

f''(0) = -6 < 0 => Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2

f''(2) = 6 > 0 => Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2

Các bài tập tương tự và luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài tập 5.15 trang 48 SGK Toán 12 tập 2 Kết nối tri thức
  • Bài tập 5.16 trang 49 SGK Toán 12 tập 2 Kết nối tri thức
  • Các bài tập trắc nghiệm về đạo hàm và ứng dụng của đạo hàm

Lưu ý khi giải bài tập về đạo hàm

Khi giải các bài tập về đạo hàm, bạn cần chú ý:

  • Nắm vững các quy tắc tính đạo hàm.
  • Kiểm tra kỹ các điều kiện cần để hàm số đạt cực trị.
  • Sử dụng đạo hàm cấp hai để xác định loại cực trị.
  • Vẽ đồ thị hàm số để kiểm tra lại kết quả.

Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài tập 5.14 trang 48 SGK Toán 12 tập 2 Kết nối tri thức. Chúc bạn học tập tốt!

Mọi thắc mắc hoặc cần hỗ trợ thêm, đừng ngần ngại liên hệ với tusach.vn.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN