1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 3.1 trang 78 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 3.1 trang 78 SGK Toán 12 tập 1 - Kết nối tri thức

Giải Bài Tập 3.1 Trang 78 Toán 12 Tập 1 - Kết Nối Tri Thức

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 3.1 trang 78 SGK Toán 12 tập 1 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ tối đa cho các em học sinh.

Thống kê số thẻ vàng của mỗi câu lạc bộ trong giải ngoại hạng Anh mùa giải 2021-2022 cho kết quả như sau: a) Hãy ghép nhóm dãy số liệu trên thành các nhóm có độ dài bằng nhau với nhóm đầu tiên là (left[ {40;50} right)). b) Tính khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu gốc và mẫu số liệu ghép nhóm thu được ở câu a. Giá trị nào là giá trị chính xác? Giá trị nào là giá trị xấp xỉ?

Đề bài

Thống kê số thẻ vàng của mỗi câu lạc bộ trong giải ngoại hạng Anh mùa giải 2021-2022 cho kết quả như sau:

Giải bài tập 3.1 trang 78 SGK Toán 12 tập 1 - Kết nối tri thức 1

a) Hãy ghép nhóm dãy số liệu trên thành các nhóm có độ dài bằng nhau với nhóm đầu tiên là \(\left[ {40;50} \right)\).

b) Tính khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu gốc và mẫu số liệu ghép nhóm thu được ở câu a. Giá trị nào là giá trị chính xác? Giá trị nào là giá trị xấp xỉ?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 3.1 trang 78 SGK Toán 12 tập 1 - Kết nối tri thức 2

Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để tính:

Cho mẫu số liệu ghép nhóm:

Giải bài tập 3.1 trang 78 SGK Toán 12 tập 1 - Kết nối tri thức 3

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).

+ Sử dụng kiến thức về khoảng tứ phân vị của mẫu số liệu ghép nhóm để tính: Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu là \({\Delta _Q}\), là hiệu số giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu đó, tức là \({\Delta _Q} = {Q_3} - {Q_1}\). 

Lời giải chi tiết

a) Bảng số liệu ghép nhóm:

Giải bài tập 3.1 trang 78 SGK Toán 12 tập 1 - Kết nối tri thức 4

b) Với mẫu số liệu gốc: Khoảng biến thiên là: \({R_1} = 101 - 42 = 59\)

Sắp xếp mẫu số liệu theo thứ tự không giảm là:

42; 47; 50; 55; 55; 57; 59; 60; 61; 63; 63; 67; 67; 68; 73; 75; 78; 79; 79; 101

Vì \(n = 20\) nên tứ phân vị thứ nhất là trung vị của dãy số liệu: 42; 47; 50; 55; 55; 57; 59; 60; 61; 63. Do đó, \({Q_1} = \frac{{55 + 57}}{2} = 56\)

Tứ phân vị thứ ba là trung vị của dãy số liệu: 63; 67; 67; 68; 73; 75; 78; 79; 79; 101. Do đó, \({Q_3} = \frac{{73 + 75}}{2} = 74\).

Khoảng tứ phân vị là: \({\Delta _{{Q_1}}} = 74 - 56 = 18\)

Với mẫu số liệu ghép nhóm: Khoảng biến thiên là: \({R_2} = 110 - 40 = 70\)

Cỡ mẫu \(n = 20\). Giả sử \({x_1},{x_2},...,{x_{20}}\) là số thẻ vàng mà mỗi câu lạc bộ ngoại hạng Anh nhận được mùa giải 2021- 2022, các giá trị này đã được sắp xếp theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{{{x_5} + {x_6}}}{2}\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {50;60} \right)\) và ta có: \(Q{'_1} = 50 + \frac{{\frac{{20}}{4} - 2}}{5}.10 = 56\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{{{x_{15}} + {x_{16}}}}{2}\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {70;80} \right)\) và ta có: \(Q{'_3} = 70 + \frac{{\frac{{3.20}}{4} - \left( {2 + 5 + 7} \right)}}{5}.10 = 72\)

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_2}}} = 72 - 56 = 16\)

Gía trị chính xác là \({R_1};\Delta {Q_1}\), giá trị xấp xỉ là \({R_2};\Delta {Q_2}\)

Giải Bài Tập 3.1 Trang 78 Toán 12 Tập 1 - Kết Nối Tri Thức: Chi Tiết và Dễ Hiểu

Bài tập 3.1 trang 78 SGK Toán 12 tập 1 Kết nối tri thức thuộc chương 1: Giới hạn. Đây là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm giới hạn của hàm số tại một điểm và cách tính giới hạn bằng định nghĩa.

Đề Bài Bài Tập 3.1 Trang 78 Toán 12 Tập 1 - Kết Nối Tri Thức

Tính các giới hạn sau:

  1. limx→2 (x2 - 3x + 2) / (x - 2)
  2. limx→-1 (x3 + 1) / (x + 1)
  3. limx→0 sin(x) / x

Lời Giải Chi Tiết Bài Tập 3.1 Trang 78 Toán 12 Tập 1 - Kết Nối Tri Thức

Để giải bài tập này, chúng ta cần sử dụng các kiến thức về giới hạn của hàm số, các quy tắc tính giới hạn và các giới hạn đặc biệt.

Giải Câu a: limx→2 (x2 - 3x + 2) / (x - 2)

Ta có thể phân tích tử thức thành nhân tử:

x2 - 3x + 2 = (x - 1)(x - 2)

Do đó:

limx→2 (x2 - 3x + 2) / (x - 2) = limx→2 (x - 1)(x - 2) / (x - 2) = limx→2 (x - 1) = 2 - 1 = 1

Giải Câu b: limx→-1 (x3 + 1) / (x + 1)

Ta có thể phân tích tử thức thành nhân tử:

x3 + 1 = (x + 1)(x2 - x + 1)

Do đó:

limx→-1 (x3 + 1) / (x + 1) = limx→-1 (x + 1)(x2 - x + 1) / (x + 1) = limx→-1 (x2 - x + 1) = (-1)2 - (-1) + 1 = 1 + 1 + 1 = 3

Giải Câu c: limx→0 sin(x) / x

Đây là một giới hạn đặc biệt quan trọng trong giải tích. Giới hạn này bằng 1:

limx→0 sin(x) / x = 1

Lưu Ý Khi Giải Bài Tập Về Giới hạn

  • Luôn kiểm tra xem có thể rút gọn biểu thức trước khi tính giới hạn hay không.
  • Sử dụng các quy tắc tính giới hạn một cách chính xác.
  • Nắm vững các giới hạn đặc biệt.
  • Khi gặp giới hạn vô định, hãy tìm cách khử dạng vô định bằng các phương pháp đại số hoặc sử dụng quy tắc L'Hôpital.

Bài Tập Tương Tự

Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:

  • limx→3 (x2 - 9) / (x - 3)
  • limx→1 (x3 - 1) / (x - 1)
  • limx→0 tan(x) / x

Hy vọng bài giải chi tiết này sẽ giúp các em hiểu rõ hơn về bài tập 3.1 trang 78 SGK Toán 12 tập 1 Kết nối tri thức. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN