1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức

Giải Bài Tập 1.40 Trang 43 Toán 12 Tập 1 - Kết Nối Tri Thức

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 1.40 trang 43 một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn học tập hiệu quả và đạt kết quả cao trong môn Toán.

Xét chiều biến thiên và tìm các cực trị (nếu có) của các hàm số sau: a) (y = {x^3} - 3{x^2} + 3x - 1); b) (y = {x^4} - 2{x^2} - 1); c) (y = frac{{2x - 1}}{{3x + 1}}); d) (y = frac{{{x^2} + 2x + 2}}{{x + 1}}).

Đề bài

Xét chiều biến thiên và tìm các cực trị (nếu có) của các hàm số sau:a) \(y = {x^3} - 3{x^2} + 3x - 1\);b) \(y = {x^4} - 2{x^2} - 1\);c) \(y = \frac{{2x - 1}}{{3x + 1}}\);d) \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 1.40 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về cách tìm cực trị của hàm số \(y = f\left( x \right)\) để tìm cực trị của hàm số:

1. Tìm tập xác định của hàm số.

2. Tính đạo hàm f’(x). Tìm các điểm mà tại đó đạo hàm f’(x) bằng 0 hoặc đạo hàm không tồn tại.

3. Lập bảng biến thiên của hàm số.

4. Từ bảng biến thiên suy ra các cực trị của hàm số.

Lời giải chi tiết

a) Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = 3{x^2} - 6x + 3 = 3{\left( {x - 1} \right)^2},y' = 0 \Leftrightarrow x = 1\)

Lập bảng biến thiên của hàm số:

Giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức 2

Hàm số \(y = {x^3} - 3{x^2} + 3x - 1\) đồng biến trên R.

Hàm số \(y = {x^3} - 3{x^2} + 3x - 1\) không có cực trị.

b) Tập xác định của hàm số là \(D = \mathbb{R}\).

Ta có: \(y' = 4{x^3} - 4x,y' = 0 \Leftrightarrow 4{x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\end{array} \right.\)

Bảng biến thiên:

Giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức 3

 Từ bảng biến thiên ta có:

Hàm số \(y = {x^4} - 2{x^2} - 1\) đồng biến trên khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\).

Hàm số \(y = {x^4} - 2{x^2} - 1\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).

Hàm số \(y = {x^4} - 2{x^2} - 1\) đạt cực đại tại \(x = 0\) và .

Hàm số \(y = {x^4} - 2{x^2} - 1\) đạt cực tiểu tại \(x = \pm 1\) và \({y_{CT}} = - 2\).

c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\).

Ta có: \(y' = \frac{{2\left( {3x + 1} \right) - 3\left( {2x - 1} \right)}}{{{{\left( {3x + 1} \right)}^2}}} = \frac{5}{{{{\left( {3x + 1} \right)}^2}}} > 0\;\forall x \ne \frac{{ - 1}}{3}\)

Lập bảng biến thiên của hàm số:

Giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức 4

Từ bảng biến thiên ta có:

Hàm số \(y = \frac{{2x - 1}}{{3x + 1}}\) đồng biến trên \(\left( { - \infty ;\frac{{ - 1}}{3}} \right)\) và \(\left( {\frac{{ - 1}}{3}; + \infty } \right)\).

Hàm số không có cực trị.

d) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có: \(y' = \frac{{\left( {2x + 2} \right)\left( {x + 1} \right) - \left( {{x^2} + 2x + 2} \right)}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right.\) (thỏa mãn)

Lập bảng biến thiên của hàm số:

Giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức 5

Từ bảng biến thiên ta có:

Hàm số \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\).

Hàm số \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) nghịch biến trên khoảng \(\left( { - 2; - 1} \right)\) và \(\left( { - 1;0} \right)\).

Hàm số \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) đạt cực đại tại \(x = - 2\) và \({y_{CĐ}} = -2\).

Hàm số \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) đạt cực tiểu tại \(x = 0\) và \({y_{CT}} = 2\).

Giải Bài Tập 1.40 Trang 43 Toán 12 Tập 1 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 1.40 trang 43 SGK Toán 12 tập 1 Kết nối tri thức yêu cầu chúng ta vận dụng kiến thức về đạo hàm của hàm số để giải quyết. Cụ thể, bài toán thường liên quan đến việc tìm đạo hàm, xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số, hoặc tìm cực trị của hàm số.

Nội dung bài tập 1.40 trang 43 SGK Toán 12 tập 1 Kết nối tri thức

Thông thường, bài tập 1.40 sẽ có dạng như sau (ví dụ):

  1. Cho hàm số y = f(x). Tìm đạo hàm f'(x).
  2. Xác định khoảng đồng biến, nghịch biến của hàm số.
  3. Tìm cực đại, cực tiểu của hàm số.

Phương pháp giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 Kết nối tri thức

Để giải quyết bài tập này, bạn cần nắm vững các kiến thức sau:

  • Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit) và quy tắc tính đạo hàm của hàm hợp.
  • Điều kiện cần và đủ để hàm số đồng biến, nghịch biến:
    • Hàm số y = f(x) đồng biến trên khoảng (a, b) khi và chỉ khi f'(x) > 0 với mọi x thuộc (a, b).
    • Hàm số y = f(x) nghịch biến trên khoảng (a, b) khi và chỉ khi f'(x) < 0 với mọi x thuộc (a, b).
  • Điều kiện để hàm số có cực đại, cực tiểu:
    • Hàm số y = f(x) đạt cực đại tại x0 khi và chỉ khi f'(x0) = 0 và f'(x) đổi dấu từ dương sang âm khi x đi qua x0.
    • Hàm số y = f(x) đạt cực tiểu tại x0 khi và chỉ khi f'(x0) = 0 và f'(x) đổi dấu từ âm sang dương khi x đi qua x0.

Ví dụ minh họa giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 Kết nối tri thức

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm, khoảng đồng biến, nghịch biến và cực trị của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Xác định khoảng đồng biến, nghịch biến:
    • y' = 0 ⇔ 3x2 - 6x = 0 ⇔ x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
    • Xét dấu y':
      x-∞02+∞
      y'+-+
    • Kết luận: Hàm số đồng biến trên (-∞, 0) và (2, +∞), nghịch biến trên (0, 2).
  3. Tìm cực trị:
    • Tại x = 0, y' đổi dấu từ dương sang âm, hàm số đạt cực đại và giá trị cực đại là y(0) = 2.
    • Tại x = 2, y' đổi dấu từ âm sang dương, hàm số đạt cực tiểu và giá trị cực tiểu là y(2) = -2.

Lưu ý khi giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 Kết nối tri thức

  • Luôn kiểm tra kỹ các bước tính đạo hàm.
  • Sử dụng bảng xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến một cách chính xác.
  • Chú ý đến điều kiện đổi dấu của đạo hàm để xác định cực đại, cực tiểu.

Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết bài tập 1.40 trang 43 SGK Toán 12 tập 1 Kết nối tri thức một cách hiệu quả. Chúc bạn học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN